Skip to main content

ChEMBL_17 Released

We are pleased to announce the release of ChEMBL_17. This version of the database, prepared on 29th August 2013 contains:

  • 1,519,640 compound records
  • 1,324,941 compounds (of which 1,318,187 have mol files)
  • 12,077,491 activities
  • 734,201 assays
  • 9,356 targets
  • 51,277 documents

You can download the data from the ChEMBL FTP site. For more information please read the release notes.

Data changes since the last release:

Drug mechanism of action

For all FDA-approved drugs, information regarding the mechanism of action and associated efficacy targets has been curated from primary sources, such as literature and drug prescribing information. Targets have only been included for a drug if a) the drug is believed to interact directly with the target and b) there is evidence that this interaction contributes towards the efficacy of that drug in the indication(s) for which it is approved.

Metal-containing compounds

Structures for around 3200 metal-containing compounds have been removed from the database (though the bioactivity and other information for these compounds is retained). For more information, please see the previous blog posts: http://chembl.blogspot.co.uk/2013/08/removal-of-metal-containing-compounds.html

New data sets

Several new deposited/extracted data sets have also been included in the latest release: two deposited data sets from GlaxoSmithKine for Ghrelin receptor agonists and Motilin receptor agonists, a data set of the results of screening the MMV Malaria Box compound collection for activity against Schistosoma mansoni, two data sets screening the GSK PKIS compound collection for inhibition of luciferase activity, and finally pathology data from the Open TG-GATES project.

Interface changes since the last release:

Browse Drug Targets tab

A new tab has been created to show the new mechanism of action information for FDA approved drugs together with the references from which the information was obtained, and links to the relevant drug/target report card pages.



Document Report Card

A new table has been added to the document report card, showing other ChEMBL documents that are related to the current document. Pair-wise document similarity is assessed by two components. The first component is defined by whether a document cites or is referenced by the other. The second component is defined by the amount of overlap between the compounds and biological targets reported in the two respective documents. This overlap is quantified by the Tanimoto coefficient. Documents with the highest Tanimoto similarity scores to the query document are listed in this section. For example, the following page shows 5 additional ChEMBL documents that are deemed similar to the paper currently being viewed.


Database changes since the last release:

A number of new tables have been added to store the drug mechanism of action information (please see release notes and schema documentation for full details). In addition, a number of minor changes have been made to existing tables:

The PROTEIN_FAMILY_CLASSIFICATION table has been deprecated and replaced by a new hierarchical version: PROTEIN_CLASSIFICATION.

The MOLREGNO field has been removed from the ATC_CLASSIFICATION table and moved to a new mapping table: MOLECULE_ATC_CLASSIFICATION.

The MOLFORMULA field has been moved from the COMPOUND_STRUCTURES table to the COMPOUND_PROPERTIES table (and renamed).


The ChEMBL Team

Comments

Can you make available the list CHEMBL ids of those 3200 metal-containing compounds?

Popular posts from this blog

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Legacy SureChEMBL retirement

Dear SureChEMBL users, About six months ago, we introduced the new version of SureChEMBL . It brought significant improvements in terms of performance and stability, and it also allows us to implement new functionalities. After the survey at the beginning of the year, we prioritised what should be delivered first. You should see the materialisation of our work in the coming months. As originally announced when the new SureChEMBL was introduced, the plan was to shut down the old system permanently to focus all our resources on the new SureChEMBL. This time has come, so expect www.surechembl-legacy.org to be unreachable in the coming days with no turning back! Consequently, and in parallel, the new SureChEMBL will lose its Beta status, and we will stop referring to it as the new version. This does not mean we are reducing our efforts to improve our system; on the contrary, this removes a distraction! If you have any feedback, you can contact us directly at surechembl-help@ebi.ac.uk . W

ChEMBL & SureChEMBL anniversary symposium

  In 2024 we celebrate the 15th anniversary of the first public release of the ChEMBL database as well as the 10th anniversary of SureChEMBL. To recognise this important landmark we are organising a two-day symposium to celebrate the work achieved by ChEMBL and SureChEMBL, and look forward to its future.   Save the date for the ChEMBL 15 Year Symposium October 1-2, 2024     Day one will consist of four workshops, a basic ChEMBL drug design workshop; an advanced ChEMBL workshop (EUbOPEN community workshop); a ChEMBL data deposition workshop; and a SureChEMBL workshop. Day two will consist of a series of talks from invited speakers, a few poster flash talks, a local nature walk, as well as celebratory cake. During the breaks, the poster session will be a great opportunity to catch up with other users and collaborators of the ChEMBL resources and chat to colleagues, co-workers and others to find out more about how the database is being used. Lunch and refreshments will be pro

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d