Skip to main content

Document Similarity in ChEMBL - 1


Many of you will have noticed a new section on the ChEMBL interface, specifically at the Document Report Card page, called Related Documents. It consists of a table listing the links for up to 5 other ChEMBL documents (i.e. publications aka papers) that are scored to be the most similar to the one featured in the report card. Here's an example

How does this work? There are examples of related documents sections online, e.g. in PubMed or in various journal publishers' websites. Document 'related-ness' or similarity can be assessed by comparing MeSH keywords or by clustering documents using TF-IDF weighted term vectors. Fortunately, ChEMBL puts a lot of effort in manually extracting and curating the compounds and biological targets from publications, so why not using these as descriptors to assess document similarity instead - as far as we know this is the first time this approach has been implemented?

So, here's how it works:

Firstly, for each document in ChEMBL, its list of references is retrieved using the excellent EuropePMC web services. By considering documents as nodes which are connected with an edge if one paper cites the other, a directed graph structure emerges. By doing this for all ~50K documents in ChEMBL, you get the massive graph illustrated above in Cytoscape. As a bonus, by measuring the in- and out- degree of the nodes, one could check which are the most cited papers in ChEMBL - but that's the topic of another blog post. This graph could be further annotated with protein target families, authors and institutions, as it has been elegantly done here.

Moving on, once a relationship between two documents is established, we need a way to quantify their similarity. As hinted above, we used the normalised overlap of compounds and targets reported in the two documents. This is done using the classic Tanimoto coefficient, so if doc A reports compounds (1,2,3) and doc B reports compounds (3,4,5), their compound Tanimoto similarity T is 1/5 or 0.2. Exactly the same applies for the target-based document similarity. The composite score we use to rank docs in the Related Documents section is simply the maximum of the two individual ones.

What does all that mean in practice? It means that 2 papers are listed as similar if they their reported compounds or biological targets overlap significantly (and one cites the other). For example, papers with follow-up experiments on the same candidate drug will be deemed similar, e.g. this one. The same will apply to two papers that involve kinase panel screening assays. A desirable side-effect is that by following the links, the tenacious user may traverse the whole graph displayed above! 


George & Mark 

Comments

Popular posts from this blog

UniChem 2.0

UniChem new beta interface and web services We are excited to announce that our UniChem beta site will become the default one on the 11th of May. The new system will allow us to better maintain UniChem and to bring new functionality in a more sustainable way. The current interface and web services will still be reachable for a period of time at https://www.ebi.ac.uk/unichem/legacy . In addition to it, the most popular legacy REST endpoints will also remain implemented in the new web services: https://www.ebi.ac.uk/unichem/api/docs#/Legacy Some downtime is expected during the swap.  What's new? UniChem’s current API and web application is implemented with a framework version that’s not maintained and the cost of updating it surpasses the cost of rebuilding it. In order to improve stability, security, and support the implementation and fast delivery of new features, we have decided to revamp our user-facing systems using the latest version of widely used and maintained frameworks, i

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

LSH-based similarity search in MongoDB is faster than postgres cartridge.

TL;DR: In his excellent blog post , Matt Swain described the implementation of compound similarity searches in MongoDB . Unfortunately, Matt's approach had suboptimal ( polynomial ) time complexity with respect to decreasing similarity thresholds, which renders unsuitable for production environments. In this article, we improve on the method by enhancing it with Locality Sensitive Hashing algorithm, which significantly reduces query time and outperforms RDKit PostgreSQL cartridge . myChEMBL 21 - NoSQL edition    Given that NoSQL technologies applied to computational chemistry and cheminformatics are gaining traction and popularity, we decided to include a taster in future myChEMBL releases. Two especially appealing technologies are Neo4j and MongoDB . The former is a graph database and the latter is a BSON document storage. We would like to provide IPython notebook -based tutorials explaining how to use this software to deal with common cheminformatics p

ChEMBL 30 released

  We are pleased to announce the release of ChEMBL 30. This version of the database, prepared on 22/02/2022 contains: 2,786,911 compound records 2,157,379 compounds (of which 2,136,187 have mol files) 19,286,751 activities 1,458,215 assays 14,855 targets 84,092 documents Data can be downloaded from the ChEMBL FTP site: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_30/ Please see ChEMBL_30 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_30/chembl_30_release_notes.txt New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document ID CHEMBL4689842):   The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesize at least

Multi-task neural network on ChEMBL with PyTorch 1.0 and RDKit

  Update: KNIME protocol with the model available thanks to Greg Landrum. Update: New code to train the model and ONNX exported trained models available in github . The use and application of multi-task neural networks is growing rapidly in cheminformatics and drug discovery. Examples can be found in the following publications: - Deep Learning as an Opportunity in VirtualScreening - Massively Multitask Networks for Drug Discovery - Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set But what is a multi-task neural network? In short, it's a kind of neural network architecture that can optimise multiple classification/regression problems at the same time while taking advantage of their shared description. This blogpost gives a great overview of their architecture. All networks in references above implement the hard parameter sharing approach. So, having a set of activities relating targets and molecules we can tra