Skip to main content

New Drug Approvals 2013 - Pt. XIII - Dolutegravir (TivicayTM)




ATC code: J05AX12

On 12 August, the FDA approved a further drug for the treatment of HIV-1 infection, Dolutegravir (Tradename: Tivicay). Dolutegravir also known as S/GSK-1349575, is an HIV-1 integrase inhibitor. The drug has been approved for treatment of treatment-naïve as well as treatment-experienced HIV-infected adults including those who have been treated with other integrase inhibitors. In addition, Dolutegravir can be used for the treatment of children aged 12 years or older and weighing at least 40kg who have not been treated with integrase inhibitors, but are either treatment-naïve or treatment –experienced.

HIV, a lentivirus, infects vital cells in the human immune system such as helper T. cells (CD4+ T cells) and macrophages. The disease is responsible for millions of death every year, especially in Sub-Saharan Africa where treatment complications are enhanced by co-infection with tuberculosis and poverty. The approval of a new antiviral agent like Dolutegravir, will enhance treatment of the disease and improve the quality of people’s lives.

Dolutegravir is an inhibitor of HIV-1 integrase responsible for the insertion of the viral DNA into the host chromosomal DNA. The drug interferes with replication of HIV by preventing the viral DNA from assimilating into the genetic material of the human T cells. An example of a 3D structure of the enzyme’s core domain (PDBe: 3vqa) is shown below.


HIV-1 integrase (ChEMBLID: CHEMBL3471, UniProt Accession: Q72498)  is an attractive target for drug design. It is one of three enzymes of HIV (others are Reverse Transcriptase and the Protease) that consists of three main domains with specific functions. The N-terminal domain characterized by the His2Cys2 motif chelates zinc, the core domain consists of the catalytic DDE motif important for the activity of the enzyme, and the C-terminal domain, with an SH3-like fold, that binds DNA nonspecifically. There are a variety of crystal structures of the different domains of HIV-1 integrase reported in PDBe (Protein Data Bank in Europe)


Dolutegravir , ChEMBLID: CHEMBL1229211 (C20H19F2N3O5, IUPAC Name: (4R,12aS)-N-[(2,4-difluorophenyl)methyl]-7-hydroxy-4-methyl-6,8-dioxo-3,4,12,12a-tetrahydro-2H-pyrido[5,6]pyrazino[2,6-b][1,3]oxazine-9-carboxamide, Canonical smiles: CC1CCOC2N1C(=O)C3=C(C(=O)C(=CN3C2)C(=O)NCC4=C(C=C(C=C4)F)F)O) has two chiral centers, molecular weight of 419.12, 2 hydrogen bond donors, 6 hydrogen bond acceptors, 3 rotatable bonds, Polar surface area of 99.18 and alogP of 0.3. Dolutergravir is orally administered since it does not violate Lipinsik’s ‘Rule of Five’. The drug may be taken with or without food. For treatment-naïve or treatment-experienced with integrase transfer inhibitor (INSTI) – naïve adults and children the recommended dose is 50mg once. A dose of 50mg twice daily is recommended when dolutegravir is co-administered with potent UGT1A/CYP3A inducers like efavirenz, fosamprenavir/ritonavir, Tipranavir/ritonavir or rifampin.

The license holder for Dolutegravir is ViiV Healthcare, an HIV joint venture between GSK, Pfizer Inc and Shionogi. The full prescribing information can be found here.

Comments

Popular posts from this blog

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

ChEMBL 29 Released

  We are pleased to announce the release of ChEMBL 29. This version of the database, prepared on 01/07/2021 contains: 2,703,543 compound records 2,105,464 compounds (of which 2,084,724 have mol files) 18,635,916 activities 1,383,553 assays 14,554 targets 81,544 documents Data can be downloaded from the ChEMBL FTP site:   https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29 .  Please see ChEMBL_29 release notes for full details of all changes in this release: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29/chembl_29_release_notes.txt New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document IDs CHEMBL4649982-CHEMBL4649998): The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesiz

Julia meets RDKit

Julia is a young programming language that is getting some traction in the scientific community. It is a dynamically typed, memory safe and high performance JIT compiled language that was designed to replace languages such as Matlab, R and Python. We've been keeping an an eye on it for a while but we were missing something... yes, RDKit! Fortunately, Greg very recently added the MinimalLib CFFI interface to the RDKit repertoire. This is nothing else than a C API that makes it very easy to call RDKit from almost any programming language. More information about the MinimalLib is available directly from the source . The existence of this MinimalLib CFFI interface meant that we no longer had an excuse to not give it a go! First, we added a BinaryBuilder recipe for building RDKit's MinimalLib into Julia's Yggdrasil repository (thanks Mosè for reviewing!). The recipe builds and automatically uploads the library to Julia's general package registry. The build currently targe

Identifying relevant compounds in patents

  As you may know, patents can be inherently noisy documents which can make it challenging to extract drug discovery information from them, such as the key targets or compounds being claimed. There are many reasons for this, ranging from deliberate obfuscation through to the long and detailed nature of the documents. For example, a typical small molecule patent may contain extensive background information relating to the target biology and disease area, chemical synthesis information, biological assay protocols and pharmacological measurements (which may refer to endogenous substances, existing therapies, reaction intermediates, reagents and reference compounds), in addition to description of the claimed compounds themselves.  The SureChEMBL system extracts this chemical information from patent documents through recognition of chemical names, conversion of images and extraction of attached files, and allows patents to be searched for chemical structures of interest. However, the curren

New Drug Warnings Browser

As mentioned in the announcement post of  ChEMBL 29 , a new Drug Warnings Browser has been created. This is an updated version of the entity browsers in ChEMBL ( Compounds , Targets , Activities , etc). It contains new features that will be tried out with the Drug Warnings and will be applied to the other entities gradually. The new features of the Drug Warnings Browser are described below. More visible buttons to link to other entities This functionality is already available in the old entity browsers, but the button to use it is not easily recognised. In the new version, the buttons are more visible. By using those buttons, users can see the related activities, compounds, drugs, mechanisms of action and drug indications to the drug warnings selected. The page will take users to the corresponding entity browser with the items related to the ones selected, or to all the items in the dataset if the user didn’t select any. Additionally, the process of creating the join query is no