Skip to main content

ADME SARfari: A tool for predicting and comparing cross-species ADME targets






ADME studies are focused on understanding the disposition of a compound within an organism and the results of such studies play a critical role in the drug development process. ADME studies (more commonly referred to as pharmacokinetic or PK studies) are focused on 4 main areas: Absorption, Distribution, Metabolism and Excretion. More information on the PK measurement types can be found here.

Comparisons of PK data across species is a potential problem drug researchers need to deal with, as model organism studies are the primary source of such data. For example, in an animal model study, which may be carried out on a compound as it passes through the drug development pipeline, is it meaningful to compare clearance or bioavailability data from a mouse or rat to human? Clearly there are many differences (physical, metabolic, genetic,..), which make answering these types of questions difficult. Building tools which guide researchers to potential answers or provide a better understanding of the inter-species differences are of great value - leading us nicely to the focus of this blog post.

https://www.ebi.ac.uk/chembl/admesarfari


It turns out the ChEMBL database has a wealth of PK measurements data, which allows users to start asking ADME focused questions. You can access all of this data via the ChEMBL Interface or from one of our downloads, but in order to answer some of the more complex questions a significant amount of data processing first needs to take place. So to help the ChEMBL community get started analysing this data, we, in collaboration with our colleagues at GSK, set about building a new ADME focused system. The new system is called ADME SARfari and it aims to centralise all ADME data currently stored in ChEMBL and other related databases, as well as providing new tools to help interrogate the data.


In order to build the system we have pulled data from a number of sources, which include:
  • ChEMBL - Bioactivity data, PK data and molecules.
  • PharmaADME - An online resource providing a list ADME related human genes. We used this to build our primary list of ADME Targets, but have also added a couple of extra ones.
  • The Human Protein Atlas -  Protein expression data for human ADME Targets.
  • ENSEMBL - Orthologue (using the Compara Service) and SNP data for ADME Targets.
  • The Göttingen minipig and beagle dog genome predicted ADME Targets. GSK have sequenced the  genomes of these two pharmaceutically significant species. More details on the genomes can be found here.
When you visit the site you will find it is divided into the following 7 sections:
  • Home - Allows user to initiate a compound or protein focused search.
  • Orthologues - A table of ADME orthologues. The first column of the table corresponds to the human ADME targets and additional columns correspond to targets found in model organisms.
  • Tissues - Protein expression data for human ADME targets.
  • Bioactivities - Bioactivity data and PK measurements for all ADME related targets in the system, which are also found in the ChEMBL database.
  • Molecules - Distinct set of ChEMBL molecules linked to ADME related targets via the bioactivity data.
  • Pharmacokinetic - A cross species comparison of PK data for compounds found in the  ChEMBL database  (see red heatmap image at top).
  • About - More details on how to use the system
By clicking on the links above, you can view and download all of the data associated within each of the sections. One exception is the Pharmacokinetics section, as there is too much data to display in the heatmap by default, so you must first initiate a search (we will come back to this later). Now that you have a better idea of what is in the system, what are the types of questions you can ask? Looking at the homepage you will see there are 2 ways to initiate a search of the system: Compound-initiated, using the chemical sketcher box and protein-initiated, using the BLAST or keyword search.


Protein Search  (Using BLAST)

To run a BLAST search paste a sequence in the text box to the right on the homepage:



BLAST search results will be displayed on the Orthologues page and only rows which contain hits to your search query will be returned:





Clicking on the Tissues tab displays the protein expression levels of the human targets returned by the BLAST search:




Clicking on the Bioactivities tab returns all of the ChEMBL bioactivity data for targets returned by BLAST search:




Clicking on the Molecules tab returns the distinct set of compounds currently displayed in the Bioactivities section:



Clicking on the Pharmacokinetics tab will provide a cross-species overview of the PK data in ChEMBL for the compounds currently displayed in the Molecules section (Note that not all compounds will have PK measurements):




The following points help explain what the heatmap above is displaying:
  • Each narrow row corresponds to a compound.
  • Each column corresponds to a PK measurement in a specific organism. 
  • The PK measurements summarised in this view are Clearance (Cl), Cmax, Bioavailability (f), T1/2, Tmax and Volume of Distribution (Vd). 
  • The colour of each cell corresponds to a low, medium and high binned PK measurement, making it easier to compare values across species.
  • The columns can be sorted by clicking on the header (see the second column, which corresponds to the Human Clearance data).

Compound Search

It is also possible to search the system using a compound structure. Simply draw or paste a structure into the compound sketcher on the left of the homepage:

 

You can then choose to run a substructure and similarity search. When you run the search you will first be taken Molecules section and you can then explore the other sections, which are all connected based on this initial set of compounds.


Predictive Model Search

The system also allows a user to predict which ADME protein target a molecule will interact with. The binding data (displayed in the Bioactivities section) has been used to build a multi-category naive Bayesian  classifier. We will follow up with a more detailed post describing the model building process, but essentially the model is able to predict if a user-submitted molecule will interact with 133 of the ADME targets included in the system. The About page provides some additional data on the targets included in the model. 

To run a search against the predictive model, draw or paste a structure into the compound sketcher on the left of the homepage and hit the "Model Prediction" button. You will be taken to the Orthologues section, but only the rows which include a target predicted to interact with submitted molecule (coloured green) will be on display:





We hope you find the ADME SARfari system useful and if you have any questions please let us know.

The ChEMBL Team

Comments

Popular posts from this blog

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...