Skip to main content

New Drug Approvals 2013 - Pt. XX - Simeprevir (OlysioTM)




ATC Code: J05AE14
Wikipedia: Simeprevir

On November 22th 2013, the FDA approved simeprevir (Tradename: Olysio; Research Code(s): TMC-435; TMC435350), a Hepatitis C virus NS3/NS4A protease (HCV NS3/NS4A) inhibitor, for the treatment of chronic hepatitis C virus genotype 1 infection, in combination with peginterferon alfa and ribavirin.

Chronic hepatitis C is a prolonged infection that affects the liver and is caused by a small single-stranded RNA virus, which is transmitted by blood-to-blood contact. Chronic hepatitis C is normally asymptomatic, but may lead to liver fibrosis, and thus liver failure.

Simeprevir is an inhibitor of the hepatitis C virus (HCV) serine protease NS3/NS4A (ChEMBLID:CHEMBL2095231; Uniprot ID:A3EZI9, D2K2A8; Pfam:PF02907), a viral protein complex required for the proteolytic cleavage of the HCV encoded polyprotein (UniProt:P27958) into mature forms of the NS4B, NS5A and NS5B proteins. These proteins are involved in the formation of the virus replication complex, and therefore are vital to its proliferation. In a biochemical assay, simeprevir inhibited the proteolytic activity of recombinant genotype 1a and 1b HCV NS3/4A proteases, with median Ki values of 0.5 nM and 1.4 nM, respectively. However, in patients infected with the genotype 1a hepatitis C virus with an NS3 Q80K polymorphism, the effectiveness of simeprevir is slightly reduced, thus, screening for this polymorphism prior to the beginning of therapy is recommended, and alternative therapies should be considered.

There are several protein structures known for HCV NS3 in complex with inhibitors, a typical entry is PDBe:3rc4, as expected from early genome annotation, the NS3 protease has a fold distantly related to the chymotrypsin-like family of serine proteases, and contains the classic Asp-His-Ser catalytic triad.


The -vir USAN/INN stem covers antiviral agents, and the substem -previr indicates it is a serine protease inhibitor. Simeprevir is the third approved agent to target HCV NS3/NS4A, following the approval of Merck's Boceprevir (q.v.) and Vertex's Telaprevir in 2011. Contrary to its predecessors, simeprevir is a natural derived compound, which requires a substantial lower dose (~16x less) for an effective response. It is also once-daily dosed, offering thus a promising alternative therapy for potential non-complying patients. Other compounds in this class in late stage clinical development/registration or earlier stages of development include Genentech's Danoprevir (RG-7227, ITMN-191), Bristol Myers Squibb's Asunaprevir (BMS-650032), Vaniprevir (MK-7009), Schering's Narlaprevir (SCH-900518), Achillion's Sovaprevir (ACH-0141625), Gilead's Vedroprevir (GS-9451), Ciluprevir (BILN-2061), ABT-450, BI-201335, IDX-320, MK-5172, BIT-225, VX-500, ACH-1625 and GS-9256.


Simeprevir (IUPAC Name: (2R,3aR,10Z,11aS,12aR,14aR)-N-(cyclopropylsulfonyl)-2-({7-methoxy-8-methyl-2-[4-(1-methylethyl)thiazol-2-yl]quinolin-4-yl}oxy)-5-methyl-4,14-dioxo-2,3,3a,4,5,6,7,8,9,11a,12,13,14,14a-tetradecahydrocyclopenta[c]cyclopropa[g][1,6]diazacyclotetradecine-12a(1H)-carboxamide; Canonical smiles: COc1ccc2c(O[C@@H]3C[C@@H]4[C@@H](C3)C(=O)N(C)CCCC\C=C/[C@@H]5C[C@]5(NC4=O)C(=O)NS(=O)(=O)C6CC6)cc(nc2c1C)c7nc(cs7)C(C)C; ChEMBL: CHEMBL501849; PubChem: 24873435; ChemSpider: 23331536; Standard InChI Key: JTZZSQYMACOLNN-VDWJNHBNSA-N) is a a natural product derived compound, with a molecular weight of 749.9 Da, 9 hydrogen bond acceptors, 2 hydrogen bond donors, and has an ALogP of 4.8. The compound is therefore not fully compliant with the rule of five.

Simeprevir is available as an oral capsule and the recommended daily dose is a single capsule of 150 mg. In HCV-infected subjects, the steady-state is reached after 7 days of once daily dosing and the mean steady-state AUC24 is 57469 ng.h/mL (standard deviation: 63571). Simeprevir should be administered with food, since food enhances its bioavailability by up to 69%. In vitro studies indicated that simeprevir is extensively bound to plasma proteins (greater than 99.9%).

The primary enzymatic system involved in the biotransformation of simeprevir in the liver is CYP3A. Therefore, co-administration of simeprevir with inhibitors or inducers of CYP3A may significantly alter the plasma concentration of simeprevir. In vitro studies indicated that simeprevir is a substrate of P-gp, and is transported into the liver by OATP1B1/3. Following a single oral administration of 200mg, the terminal elimination half-life of simeprevir is 10 to 13 hours in HCV-uninfected subjects and 41 hours in HCV-infected subjects. Elimination of simeprevir occurs via biliary excretion, and its metabolites are primarily excreted in feces.

As simeprevir is given as a component of a combination antiviral treatment regime with ribavirin and peginterferon alfa, there is a warning for embryofetal toxicity.

The license holder for OlysioTM is Janssen Pharmaceuticals, and the full prescribing information can be found here.

Comments

Popular posts from this blog

ChEMBL_27 SARS-CoV-2 release

The COVID-19 pandemic has resulted in an unprecedented effort across the global scientific community. Drug discovery groups are contributing in several ways, including the screening of compounds to identify those with potential anti-SARS-CoV-2 activity. When the compounds being assayed are marketed drugs or compounds in clinical development then this may identify potential repurposing opportunities (though there are many other factors to consider including safety and PK/PD considerations; see for example https://www.medrxiv.org/content/10.1101/2020.04.16.20068379v1.full.pdf+html). The results from such compound screening can also help inform and drive our understanding of the complex interplay between virus and host at different stages of infection.
Several large-scale drug screening studies have now been described and made available as pre-prints or as peer-reviewed publications. The ChEMBL team has been following these developments with significant interest, and as a contribution t…

RDKit, C++ and Jupyter Notebook

Fancy playing with RDKit C++ API without needing to set up a C++ project and compile it? But wait... isn't C++ a compiled programming language? How this can be even possible?

Thanks to Cling (CERN's C++ interpreter) and xeus-cling jupyter kernel is possible to use C++ as an intepreted language inside a jupyter notebook!

We prepared a simple notebook showing few examples of RDKit functionalities and a docker image in case you want to run it.

With the single requirement of docker being installed in your computer you'll be able to easily run the examples following the three steps below:
docker pull eloyfelix/rdkit_jupyter_clingdocker run -d -p 9999:9999 eloyfelix/rdkit_jupyter_clingopen http://localhost:9999/notebooks/rdkit_cling.ipynb in a browser


FPSim2, a simple Python3 molecular similarity tool

FPSim2 is a new tool for fast similarity search on big compound datasets (>100 million) being developed at ChEMBL. We started developing it as we needed a Python3 library able to run either in memory or out-of-core fast similarity searches on such dataset sizes.

It's written in Python/Cython and features:
A fast population count algorithm (builtin-popcnt-unrolled) from https://github.com/WojciechMula/sse-popcount using SIMD instructions.Bounds for sub-linear speed-ups from 10.1021/ci600358fA compressed file format with optimised read speed based in PyTables and BLOSCUse of multiple cores in a single search In memory and on disk search modesSimple and easy to use
Source code is available on github and Conda packages are also available for either mac or linux. To install it type:

conda install rdkit -c rdkitconda install fpsim2 -c efelix
Try it with docker (much better performance than binder):

    docker pull eloyfelix/fpsim2    docker run -p 9999:9999 eloyfelix/fpsim2    open htt…

2019 and ChEMBL – News, jobs and birthdays

Happy New Year from the ChEMBL Group to all our users and collaborators. 
Firstly, do you want a new challenge in 2019?  If so, we have a position for a bioinformatician in the ChEMBL Team to develop pipelines for identifying links between therapeutic targets, drugs and diseases.  You will be based in the ChEMBL team but also work in collaboration with the exciting Open Targets initiative.  More details can be found here(closing date 24thJanuary). 
In case you missed it, we published a paper at the end of last on the latest developments of the ChEMBL database “ChEMBL: towards direct deposition of bioassay data”. You can read it here.  Highlights include bioactivity data from patents, human pharmacokinetic data from prescribing information, deposited data from neglected disease screening and data from the IMI funded K4DD project.  We have also added a lot of new annotations on the therapeutic targets and indications for clinical candidates and marketed drugs to ChEMBL.  Importantly we ha…

ChEMBL 25 and new web interface released

We are pleased to announce the release of ChEMBL 25 and our new web interface. This version of the database, prepared on 10/12/2018 contains:

2,335,417 compound records1,879,206 compounds (of which 1,870,461 have mol files)15,504,603 activities1,125,387 assays12,482 targets72,271 documents

Data can be downloaded from the ChEMBL ftp site: ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_25

Please see ChEMBL_25 release notes for full details of all changes in this release: ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_25/chembl_25_release_notes.txt


DATA CHANGES SINCE THE LAST RELEASE

# Deposited Data Sets:

Kuster Lab Chemical Proteomics Drug Profiling (src_id = 48, Document ChEMBL_ID = CHEMBL3991601):
Data have been included from the publication: The target landscape of clinical kinase drugs. Klaeger S, Heinzlmeir S and Wilhelm M et al (2017), Science, 358-6367 (https://doi.org/10.1126/science.aan4368)

# In Vivo Assay Classification:

A classification…