Skip to main content

New Drug Approvals 2013 - Pt. XX - Simeprevir (OlysioTM)




ATC Code: J05AE14
Wikipedia: Simeprevir

On November 22th 2013, the FDA approved simeprevir (Tradename: Olysio; Research Code(s): TMC-435; TMC435350), a Hepatitis C virus NS3/NS4A protease (HCV NS3/NS4A) inhibitor, for the treatment of chronic hepatitis C virus genotype 1 infection, in combination with peginterferon alfa and ribavirin.

Chronic hepatitis C is a prolonged infection that affects the liver and is caused by a small single-stranded RNA virus, which is transmitted by blood-to-blood contact. Chronic hepatitis C is normally asymptomatic, but may lead to liver fibrosis, and thus liver failure.

Simeprevir is an inhibitor of the hepatitis C virus (HCV) serine protease NS3/NS4A (ChEMBLID:CHEMBL2095231; Uniprot ID:A3EZI9, D2K2A8; Pfam:PF02907), a viral protein complex required for the proteolytic cleavage of the HCV encoded polyprotein (UniProt:P27958) into mature forms of the NS4B, NS5A and NS5B proteins. These proteins are involved in the formation of the virus replication complex, and therefore are vital to its proliferation. In a biochemical assay, simeprevir inhibited the proteolytic activity of recombinant genotype 1a and 1b HCV NS3/4A proteases, with median Ki values of 0.5 nM and 1.4 nM, respectively. However, in patients infected with the genotype 1a hepatitis C virus with an NS3 Q80K polymorphism, the effectiveness of simeprevir is slightly reduced, thus, screening for this polymorphism prior to the beginning of therapy is recommended, and alternative therapies should be considered.

There are several protein structures known for HCV NS3 in complex with inhibitors, a typical entry is PDBe:3rc4, as expected from early genome annotation, the NS3 protease has a fold distantly related to the chymotrypsin-like family of serine proteases, and contains the classic Asp-His-Ser catalytic triad.


The -vir USAN/INN stem covers antiviral agents, and the substem -previr indicates it is a serine protease inhibitor. Simeprevir is the third approved agent to target HCV NS3/NS4A, following the approval of Merck's Boceprevir (q.v.) and Vertex's Telaprevir in 2011. Contrary to its predecessors, simeprevir is a natural derived compound, which requires a substantial lower dose (~16x less) for an effective response. It is also once-daily dosed, offering thus a promising alternative therapy for potential non-complying patients. Other compounds in this class in late stage clinical development/registration or earlier stages of development include Genentech's Danoprevir (RG-7227, ITMN-191), Bristol Myers Squibb's Asunaprevir (BMS-650032), Vaniprevir (MK-7009), Schering's Narlaprevir (SCH-900518), Achillion's Sovaprevir (ACH-0141625), Gilead's Vedroprevir (GS-9451), Ciluprevir (BILN-2061), ABT-450, BI-201335, IDX-320, MK-5172, BIT-225, VX-500, ACH-1625 and GS-9256.


Simeprevir (IUPAC Name: (2R,3aR,10Z,11aS,12aR,14aR)-N-(cyclopropylsulfonyl)-2-({7-methoxy-8-methyl-2-[4-(1-methylethyl)thiazol-2-yl]quinolin-4-yl}oxy)-5-methyl-4,14-dioxo-2,3,3a,4,5,6,7,8,9,11a,12,13,14,14a-tetradecahydrocyclopenta[c]cyclopropa[g][1,6]diazacyclotetradecine-12a(1H)-carboxamide; Canonical smiles: COc1ccc2c(O[C@@H]3C[C@@H]4[C@@H](C3)C(=O)N(C)CCCC\C=C/[C@@H]5C[C@]5(NC4=O)C(=O)NS(=O)(=O)C6CC6)cc(nc2c1C)c7nc(cs7)C(C)C; ChEMBL: CHEMBL501849; PubChem: 24873435; ChemSpider: 23331536; Standard InChI Key: JTZZSQYMACOLNN-VDWJNHBNSA-N) is a a natural product derived compound, with a molecular weight of 749.9 Da, 9 hydrogen bond acceptors, 2 hydrogen bond donors, and has an ALogP of 4.8. The compound is therefore not fully compliant with the rule of five.

Simeprevir is available as an oral capsule and the recommended daily dose is a single capsule of 150 mg. In HCV-infected subjects, the steady-state is reached after 7 days of once daily dosing and the mean steady-state AUC24 is 57469 ng.h/mL (standard deviation: 63571). Simeprevir should be administered with food, since food enhances its bioavailability by up to 69%. In vitro studies indicated that simeprevir is extensively bound to plasma proteins (greater than 99.9%).

The primary enzymatic system involved in the biotransformation of simeprevir in the liver is CYP3A. Therefore, co-administration of simeprevir with inhibitors or inducers of CYP3A may significantly alter the plasma concentration of simeprevir. In vitro studies indicated that simeprevir is a substrate of P-gp, and is transported into the liver by OATP1B1/3. Following a single oral administration of 200mg, the terminal elimination half-life of simeprevir is 10 to 13 hours in HCV-uninfected subjects and 41 hours in HCV-infected subjects. Elimination of simeprevir occurs via biliary excretion, and its metabolites are primarily excreted in feces.

As simeprevir is given as a component of a combination antiviral treatment regime with ribavirin and peginterferon alfa, there is a warning for embryofetal toxicity.

The license holder for OlysioTM is Janssen Pharmaceuticals, and the full prescribing information can be found here.

Comments

Popular posts from this blog

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...