Skip to main content

New Drug Approvals - Pt. IV - Tolvaptan (Samsca)

Latest through the gates is Tolvaptan (trade name Samsca), approved on May 21st 2009. Tolvaptan is a first-in-class oral vasopressin receptor antagonist used for the treatment of hyponatremia (low plasma sodium levels). Tolvaptan (previously known as the research code OPC-41,061) is selective for the Vasopressin V2 receptor isoform (reportedly 29 fold selective over the V1a receptor isoform. There are a number of -vaptans (the USAN stem for vasopressin antagonists) of varying selectivity profiles in clinical trials (including Conivaptan, Relcovaptan, SSR-149,415, Lixivaptan, Mozavaptan, and Satavaptan) for a variety of differing indications; but Tolvaptan is the first to be approved in the US.

Tolvaptan has a boxed warning (colloquially known as a 'black box').

Tolvaptan is a racemic small molecule drug (Molecular Weight of 448.9 g.mol-1) and is a lipophilic drug, is essentially insoluble in water, and has fair oral absorption (>40% bioavailable). Tolvaptan hsa a plasma half-life of around 12 hours, a volume of distribution of 3L/kg, and has high plasma protein binding at 99%. Tolvaptan is extensively metabolised by 3A4, and therefore has many concommitent interactions with 3A4 substrates, inhibitors and inducers. Reportedly, Tolvaptan metabolites show no appreciable pharmacology against the vasopressin receptors. Interestingly, Tolvaptan is a racemic drug, with the two enantiomers showing differing PK/PD. Typical daily dosing is 30mg (or ~67µmol), or 60mg if insufficient efficacy is observed. The full prescribing information is here.

The structure (±)-4'-[(7-chloro-2,3,4,5-tetrahydro-5-hydroxy-1H-1-benzazepin-1-yl) carbony1]- o-tolu-m-toluidide. The molecule is rigid, with very few freely rotatable bonds, and comparatively planar (due to the presence of sp2 hybridized atoms adjacent to the core phenyl ring). The racemic stereocenter is at the hydroxyl on the benzazepine (a benzazepine is a seven-membered nitrogen containing heterocycle (an azepine) fused to benzene ring). The neutral, largely lipophilic and aromatic nature of Tolvaptan is consistent with the reported 3A4 avidity. Finally, another feature of note is the presence of an aniline in the molecule (an aniline is an aromatic amine, here in Tolvaptan it is masked as an amide); anilines have a reputation for being associated with unwanted toxicities with drugs, although this is by no-way a hard and fast rule!

Tolvaptan canonical SMILES: CC1=CC=CC=C1C(=O)NC2=CC(=C(C=C2)C(=O)N3CCCC(C4=C3C=CC(=C4)Cl)O)C Tolvaptan InChI: InChI=1S/C26H25ClN2O3/c1-16-6-3-4-7-20(16)25(31)28-19-10-11-21(17(2)14- 19)26(32)29-13-5-8-24(30)22-15-18(27)9-12-23(22)29/h3-4,6-7,9-12,14-15, 24,30H,5,8,13H2,1-2H3,(H,28,31) Tolvaptan InChIKey: GYHCTFXIZSNGJT-UHFFFAOYSA-N Tolvaptan CAS registry: 150683-30-0 Tolvaptan Chemdraw: Tolvaptan.cdx

The license holder for Tolvaptan is Otsuka Pharmaceuticals and the product website is www.samsca.com

Comments

Popular posts from this blog

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen

ChEMBL & SureChEMBL anniversary symposium

  In 2024 we celebrate the 15th anniversary of the first public release of the ChEMBL database as well as the 10th anniversary of SureChEMBL. To recognise this important landmark we are organising a two-day symposium to celebrate the work achieved by ChEMBL and SureChEMBL, and look forward to its future.   Save the date for the ChEMBL 15 Year Symposium October 1-2, 2024     Day one will consist of four workshops, a basic ChEMBL drug design workshop; an advanced ChEMBL workshop (EUbOPEN community workshop); a ChEMBL data deposition workshop; and a SureChEMBL workshop. Day two will consist of a series of talks from invited speakers, a few poster flash talks, a local nature walk, as well as celebratory cake. During the breaks, the poster session will be a great opportunity to catch up with other users and collaborators of the ChEMBL resources and chat to colleagues, co-workers and others to find out more about how the database is being used. Lunch and refreshments will be pro

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.