Skip to main content

New Drug Approvals - Pt. V - Everolimus (Afinitor)

Also approved this year, on March 30th 2009, is Everolimus (USAN). Everolimus is an inhibitor of mTOR (mammalian target of rapamycin), a serine-threonine kinase, and is indicated for the treatment of advanced renal cell carcinoma after failure of treatment with Sunitinib or Sorafenib. Sunitinib and Sorafenib are both orally dosed small molecule inhibitors of protein kinases. Everolimus is also marketed under the trade name (although not currently in the US) as Certican, which is used for immunosuppression in transplant therapy. Everolimus (previously known by the research code RAD-001) is a relatively large 'small molecule' drug (Molecular Weight of 958.2 g.mol-1), lipophilic, orally absorbed and has a low plasma binding of ~74%. Everolimus is primarily metabolized CYP3A4 routes, with known metabolites being essentially inactive as mTor inhibitors, these are largely excreted in the feces. Everolimus has a long mean elimination half-life of ~30 hours. Typical dosage is 10 mg (equivalent to ca. 10.4 umol) once a day. The full prescribing information can be found here.

The structure (1R,9S,12S,15R,16E,18R,19R,21R,23S,24E,26E,28E,30S,32S,35R)-1,18- dihydroxy-12-{(1R)-2-[(1S,3R,4R)-4-(2-hydroxyethoxy)-3-methoxycyclohexyl]-1-methylethyl}-19,30-dimethoxy-15,17,21,23,29,35-hexamethyl-11,36-dioxa-4-aza-tricyclo[,9]hexatriaconta-16,24,26,28-tetraene-2,3,10,14,20-pentaone) contains a macrolide ring (a large macrocyclic ester), often a characteristic of natural products. In fact, with the complex size, high number of defined stereocenters Everolimus is very 'natural product like'. of striking functional group interest is the presence of the unusual alpha-keto amide functionality (the two adjacent carbonyls and the amide from the six membered piperidine ring - this has unusual conformational and reactivity properties, and is associated with the conformation required for cis- to trans-isomerisation for a proline containing peptide.

Everolimus is chemcially very similar to the natural product drug Rapamycin (in fact one chemical name for Everolimus is 42-O-(2-hydroxyethyl)-Rapamycin). Confusingly Rapamycin is also known by the USAN Sirolimus. Sirolimus was originally identified as an active component of a soil isolate from Easter Island, eventually the source of this molecule was found to be the bacteria Streptomyces hygroscopicus. A further member of the family is the drug Tacrolimus (USAN) (also know by the research code FK-506) which was isolated from a Japanese soil sample, and is made by the bacteria Streptomyces tsukubaensis. Rather excitingly drugs of this class have been very recently shown to extend the lifespan of mice (click here for a pdf of the Nature paper, and here for further media coverage). Of course, due to the other functions of Rapamycin (suppression of the immune system) drugs of this class may not actually be that useful for the extension of life.

Everolimus canonical SMILES: O=C2[C@H](C)C[C@@H](\C=C\C=C/C=C(\C)[C@@H](OC)C[C@H]4O[C@@](O)(C(=O)C(=O)N3[C@H](C(=O)O[C@H]([C@H](C)C[C@@H]1CC[C@@H](OCCO)[C@H](OC)C1)CC(=O)[C@@H](/C=C(/C)[C@@H](O)[C@H]2OC)C)CCCC3)[C@@H](CC4)C)C Everolimus InChI: InChI=1/C53H83NO14/c1-32-16-12-11-13-17-33(2)44(63-8)30-40-21-19- 38(7)53(62,68-40)50(59)51(60)54-23-15-14-18-41(54)52(61)67-45(35( 4)28-39-20-22-43(66-25-24-55)46(29-39)64-9)31-42(56)34(3)27-37(6) 48(58)49(65-10)47(57)36(5)26-32/h11-13,16-17,27,32,34-36,38-41,43 -46,48-49,55,58,62H,14-15,18-26,28-31H2,1-10H3/b13-11-,16-12+,33- 17+,37-27-/t32-,34-,35-,36-,38-,39+,40+,41+,43-,44+,45+,46-,48-,4 9+,53-/m1/s1 Everolimus InChIKey: HKVAMNSJSFKALM-CNPAPGRKBU Everolimus CAS registry: 159351-69-6 Everolimus ChemDraw: Everolimus.cdx

The manufacturer of Everolimus is Novartis and the product website is


Popular posts from this blog

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

ChEMBL 29 Released

  We are pleased to announce the release of ChEMBL 29. This version of the database, prepared on 01/07/2021 contains: 2,703,543 compound records 2,105,464 compounds (of which 2,084,724 have mol files) 18,635,916 activities 1,383,553 assays 14,554 targets 81,544 documents Data can be downloaded from the ChEMBL FTP site: .  Please see ChEMBL_29 release notes for full details of all changes in this release: New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document IDs CHEMBL4649982-CHEMBL4649998): The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesiz

Julia meets RDKit

Julia is a young programming language that is getting some traction in the scientific community. It is a dynamically typed, memory safe and high performance JIT compiled language that was designed to replace languages such as Matlab, R and Python. We've been keeping an an eye on it for a while but we were missing something... yes, RDKit! Fortunately, Greg very recently added the MinimalLib CFFI interface to the RDKit repertoire. This is nothing else than a C API that makes it very easy to call RDKit from almost any programming language. More information about the MinimalLib is available directly from the source . The existence of this MinimalLib CFFI interface meant that we no longer had an excuse to not give it a go! First, we added a BinaryBuilder recipe for building RDKit's MinimalLib into Julia's Yggdrasil repository (thanks Mosè for reviewing!). The recipe builds and automatically uploads the library to Julia's general package registry. The build currently targe

Identifying relevant compounds in patents

  As you may know, patents can be inherently noisy documents which can make it challenging to extract drug discovery information from them, such as the key targets or compounds being claimed. There are many reasons for this, ranging from deliberate obfuscation through to the long and detailed nature of the documents. For example, a typical small molecule patent may contain extensive background information relating to the target biology and disease area, chemical synthesis information, biological assay protocols and pharmacological measurements (which may refer to endogenous substances, existing therapies, reaction intermediates, reagents and reference compounds), in addition to description of the claimed compounds themselves.  The SureChEMBL system extracts this chemical information from patent documents through recognition of chemical names, conversion of images and extraction of attached files, and allows patents to be searched for chemical structures of interest. However, the curren

New Drug Warnings Browser

As mentioned in the announcement post of  ChEMBL 29 , a new Drug Warnings Browser has been created. This is an updated version of the entity browsers in ChEMBL ( Compounds , Targets , Activities , etc). It contains new features that will be tried out with the Drug Warnings and will be applied to the other entities gradually. The new features of the Drug Warnings Browser are described below. More visible buttons to link to other entities This functionality is already available in the old entity browsers, but the button to use it is not easily recognised. In the new version, the buttons are more visible. By using those buttons, users can see the related activities, compounds, drugs, mechanisms of action and drug indications to the drug warnings selected. The page will take users to the corresponding entity browser with the items related to the ones selected, or to all the items in the dataset if the user didn’t select any. Additionally, the process of creating the join query is no