Skip to main content

ChEMBL Is Alive! Part 1 - posted by Louisa


'ChEMBL Is Alive' is to show that ChEMBLdb is a living database that is constantly being worked on by a number of people. As the Chemical Curator for ChEMBL, I (Louisa Bellis) thought it would be interesting for our Blog readers to find out what goes on behind the scenes at 'ChEMBL Towers' and to get regular updates on what we are doing to the data between releases and in response to user emails sent to chembl-help@ebi.ac.uk.

As well as being the chemical curator, I also deal with most of the help-desk traffic, where users can email in and let us know of any errors that they may have found, or even to suggest an improvement or enhancement for the interface.

As an example of the work that is done to ChEMBL on an ongoing basis, I thought it would be good to give a brief summary of some of the chemical curation that occurred during the month of June 2012:

An external user pointed out to me that they had come across a 'few' compounds that had the same canonical SMILES string, but had different standard InChI strings. I created a spreadsheet of these duplicate SMILES, which came to a whopping 967 lines. Of these, just over 100 lines were due to E/Z isomerism, some needed to be merged for being incorrect and the rest were checked individually to see why the SMILES were the same. It turned out that there was an issue with the molfiles so each of these compounds was redrawn from scratch. This came to 1,112 compound redraws in all which will be loaded into ChEMBL as soon as possible and will be visible to external users in the ChEMBL_15 release (expected end of November 2012).

I also started working on a list of duplicate names in the ChEMBL database. This was to support my own work flow and not suggested by our users - it created a list of 9,952 duplicate names. However, not all duplicate names are actual duplicates that need to be merged together, they can simply have the same simple chemical name that is not reflecting that they are enantiomers of each other. This work is still ongoing, but I have been able to redraw and merge about 100 compounds as a direct result of this list. I am only about 10% of the way through this spreadsheet, so I can say that it will keep me busy for a little while yet.

In June, we also received two emails from users to let us know that they had found what they believed were errors. In one case, the units had been incorrectly extracted from the paper as nM, when they were in fact uM. Upon checking the paper, I could see where the confusion had arisen. I could see that it had one table where they displayed uM and all the rest of the tables were nM, so the extractor had not seen this difference. These have now been fixed and will be visible in ChEMBL_14 (due for release end of July 2012).

The other email I'll mention here was to do with target assignment, where we had assigned a target to some data, and the user had read the paper and believed that the data was incorrectly assigned. This is still being checked by our biological curator, but if found to be incorrect, will be changed immediately in the database.

These are both great examples of users helping us to improve the quality of data in ChEMBL.

I hope to add more curation information in the future, but if there is anything specific that you would like to see me blog about (relating to curation or error checking) then please let me know.

Comments

Thierry said…
Hi Louisa,

Thanks for the cool update and the impressive demonstration of transparency.

Thierry
Noel O'Boyle said…
Likewise - see it's not just me, Louisa! :-)
Louisa said…
Thanks for the positive comments. If there is something specific that you would like me to write about, please just let me know.

thanks

Louisa

Popular posts from this blog

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...