Skip to main content

Public Popular Chemistry Databases and Licensing


Licensing of data, and copyright is a complex thing, and always gets people hot under the collar! Some time ago, following consultation with our funders, we settled on a CC-BY-SA license for ChEMBL - this does a couple of things, but primarily it places an explicit license on the data so it is clear what you can do with it. There is a lot of hot air and active discussion over how 'public' and 'open' particular licenses are, but the CC-BY-SA 3.0 license made sense to us (for reference, this license is also used by the world's premier open resource wikipedia - here is their license)

This license we apply to each release of the database, it makes the data freely available and usable. It requires attribution, so that users of derivative works know where the data comes from, can identify the funders and producers of the work - which we think is fair and appropriate, and finally it applies 'share-alike', so that if you distribute the ChEMBL data further you shouldn't restrict the rights of your users to further give away, use, remix, etc. the data. To be clear though, it does not preclude commercial use of the data.

The Share Alike clause is the thing that people usually get excited by, but this is meant to ensure that if you distribute the data to others you make sure that you also give those you distribute it to the same right to redistribute. If you have a significant problem with this, then don't redistribute any data you get under a SA license; if you find it difficult to keep track of the provenance of data entering your systems, should you really be building stuff to distribute anyway? ;)

Chemistry is a relatively odd world compared to bioinformatics, in that users are generally worried about inadvertent disclosure of their ideas and queries - the basis of the concern is that running a search over the Internet, over an open network, can amount to disclosure and 'publication', and could in theory void a patent through prior art disclosure. As you are probably aware, it is easy to monitor and record traffic over public networks, recovering passwords, etc. Secondly, there is a general suspicion over what happens to recording usage on the servers - do the providers of the web service mine the queries? sell them on? and other sort of paranoid stuff. Well it is not as paranoid as you may think, maybe, since several large internet sites explicitly state in the Terms and Conditions that your query becomes their intellectual property. Sloppy programming, in particular with advertiser sites, can disclose a whole bunch of query data to advertisers.

One of the ways of dealing with the former issue, is to provide access over the https: protocol, this encrypts the traffic between your client browser and the server, and also prevents impersonation of the server by another machine (to most reasonable intents and purposes this is still true). The same secure http: protocol can be applied to make programmatic web services secure too.

There are a number of large 'free'/Open chemical databases at the moment, and we drew up a little table the other day comparing the license and access. It's not complete, probably contains some errors, so if anything is wrong, please let me know. If there are other Open resources to add, put something in the comments, and I'll add it to the table.

Update - thanks to Richard of the RSC, I've corrected some ambiguities in the original table.

ResourceUrl (http: protocol form)LicenseDownloadhttps:
ChEMBLhttp://www.ebi.ac.uk/chemblCC-BY-SAyesyes

BindingDBhttp://www.bindingdb.org/CC-BY-SAyesno

PubChemhttp://pubchem.ncbi.nlm.nih.gov/No clear license statementyesyes

ZINChttp://zinc.docking.org/No redistribution of significant subsets without permissionyesyes, but certificate expired

ChemSpiderhttp://www.chemspider.com/No download, and limited to a total 5,000 data entries stored locally. API access free to academic users, others by agreement.noyes, but broken

Comments

Popular posts from this blog

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...