Skip to main content

New Drug Approvals 2012 - Pt. XXV - Tofacitinib citrate (XELJANZ®)





On November 6, the FDA approved Tofacitinib citrate (Trade Name: XELJANZ®; Research code: CP-690550, ChEMBL : CHEMBL221959, PubChem: CID9926791, DrugBank: DB08183, ChemSpider: 8102425) to treat moderately to severely active Rheumatoid Arthritis (RA). It is orally administered and may be used as monotherapy agent or in combination of non-biologic DMARDs. About 1% of the world-wide population is affected by rheumatoid arthritis. RA affects predominantly women (three times more susceptible than men) and is more frequent between ages 40 and 50, but people of any age can be affected.

Other approved drugs in this commercially competitive sector include Adalimumab (Trade Name: Humira, ChEMBL: CHEMBL1201580, DrugBank: DB00051), Etanercept (Trade Name: EnbrelChEMBL: CHEMBL1201572, DrugBank: DB00005), Infliximab (Trade Name: Remicade, ChEMBL: CHEMBL1201581, DrugBank: DB00065).


IUPAC Name: 3-(4-methyl-3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)piperidin-1-yl)-3-oxopropanenitrile
Canionical Smiles: C[C@@H]1CCN(C[C@@H]1N(C)c2ncnc3[nH]ccc23)C(=O)CC#N
Standard InChi : InChI=1S/C16H20N6O/c1-11-5-8-22(14(23)3-6-17)9-13(11)21(2)16-12-4-7-18-15(12)19-10-20-16/h4,7,10-11,13H,3,5,8-9H2,1-2H3,(H,18,19,20)/t11-,13+/m1/s1
Standard InChi Key: UJLAWZDWDVHWOW-YPMHNXCESA-N

XELJANZ is the citrate salt of tofacitinib which is an inhibitor of Janus Kinase (JAK), an intracellular tyrosine kinase which transmit signals from cytokine or growth factor-receptor interactions on the cell membrane to influence cellular processes of hematopoiesis and immune cell function. Within the signalling pathway JAKs phosphorylate and activate Signal Transducers and Activators of Transcription (STATs) which modulate intracellular activity including gene expression. JAK-STAT system is a major signalling alternative to the secondary messenger system.


XELJANZ is specifically designed to inhibit the JAK pathways, which are signalling pathways inside the cell that play an important role in the inflammation involved in RA. Tofacitinib modulates the signalling pathway and prevents the phosphorylation and activation of STATs. JAK enzymes transmit cytokine signalling through pairing of JAKs (e.g., JAK1/JAK2, JAK1/JAK3, JAK1/TyK2, JAK2/JAK2). Tofacitinib has in vitro activities against JAK1/JAK2, JAK1/JAK3 and JAK2/JAK2 combinations.

The picture on left is PDB entry: 3lxn for crystal structure for TYK2 (in Red) with CP-690550 (in Blue/Green) and the picture on right is PDBe entry: 3lxk for crystal structure for JAK3 (in Red) with CP-690550 (in Blue/Green).




Recommended dosage is 5 mg orally. It has an apparent volume of distribution of 87 L and protein binding to the drug is approximately 40%, and it's bioavailability is 74% with elimination half-life of approximately 3 hrs. Metabolism of Tofacitinb is majorly mediated by Cytochrome P450 3A4 (CYP3A4) and minor contribution from Cytochrome P450 2C19 (CYP2C19). Clearance is estimated to be 70% hepatic, 30% renal.

Full prescribing information can be found here.


License holder is Pfizer and product website is www.xeljanz.com.

Comments

Popular posts from this blog

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Legacy SureChEMBL retirement

Dear SureChEMBL users, About six months ago, we introduced the new version of SureChEMBL . It brought significant improvements in terms of performance and stability, and it also allows us to implement new functionalities. After the survey at the beginning of the year, we prioritised what should be delivered first. You should see the materialisation of our work in the coming months. As originally announced when the new SureChEMBL was introduced, the plan was to shut down the old system permanently to focus all our resources on the new SureChEMBL. This time has come, so expect www.surechembl-legacy.org to be unreachable in the coming days with no turning back! Consequently, and in parallel, the new SureChEMBL will lose its Beta status, and we will stop referring to it as the new version. This does not mean we are reducing our efforts to improve our system; on the contrary, this removes a distraction! If you have any feedback, you can contact us directly at surechembl-help@ebi.ac.uk . W

ChEMBL & SureChEMBL anniversary symposium

  In 2024 we celebrate the 15th anniversary of the first public release of the ChEMBL database as well as the 10th anniversary of SureChEMBL. To recognise this important landmark we are organising a two-day symposium to celebrate the work achieved by ChEMBL and SureChEMBL, and look forward to its future.   Save the date for the ChEMBL 15 Year Symposium October 1-2, 2024     Day one will consist of four workshops, a basic ChEMBL drug design workshop; an advanced ChEMBL workshop (EUbOPEN community workshop); a ChEMBL data deposition workshop; and a SureChEMBL workshop. Day two will consist of a series of talks from invited speakers, a few poster flash talks, a local nature walk, as well as celebratory cake. During the breaks, the poster session will be a great opportunity to catch up with other users and collaborators of the ChEMBL resources and chat to colleagues, co-workers and others to find out more about how the database is being used. Lunch and refreshments will be pro

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d