Skip to main content

Target Prediction Models Update



In case you have been too busy to notice, ChEMBL_21 has arrived with the usual additions, improvements and enhancements both on the data/annotation side, as well as on the interface/services. To complement this, we have also updated the target prediction models, which can be downloaded from our ftp here

The good news is that, besides the increase in terms of training data (compounds and targets), the new models were built using the latest stable versions of RDKit (2015.09.2) and scikit-learn (0.17). The latter was upgraded from the much older 0.14 version, which was causing incompatibility issues (see MultiLabelBinarizer) to several of you while trying to use the models.

We've also put together a quick Jupyter Notebook demo on how to get predictions from the models here: 

The new models will also be available on myChEMBL 21 along with a more detailed and elaborate Jupyter Notebook.


On a side note, am I allowed to be impressed by how easy it is nowadays to install Python and RDKit? 
It is literally just a matter of 6 commands and 5 minutes (on my Mac): 

curl -o miniconda.sh http://repo.continuum.io/miniconda/Miniconda3-3.8.3-MacOSX-x86_64.sh
bash miniconda.sh
conda create -n rd27 python=2.7
source activate rd27
conda install ipython ipython-notebook pillow pandas requests
conda install -c https://conda.anaconda.org/rdkit rdkit

To put things in perspective: the first time I tried to compile Python and RDKit from scratch was in 2010 (on a RedHat 5.6 machine, of course); it took me about 4 days :) 


George

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the