Skip to main content

Some Queries For Data Retrieval From StARlite

It is a public holiday in the UK today (we call these bank holidays, for reasons that seem obscure nowadays). The weather is traditionally bad on such days, and today is no exception, at least the remainder of the week, when we return to work, will be fine and sunny.

We will run a further StARlite schema and query walkthrough webinar shortly, but in the meantime here are some skeleton sql queries, that perform a set of related queries retrieving compounds/bioactivities for a given target. In this case the target is human PDE4A (for which the tid is 3), and human PDE5A (for which the tid is 276). We will walk through getting these unique target identifiers (or tids) on another occasion, but suffice it to say, that this is easy, especially programmatically, using blastp.

Firstly, retrieving a set of potent inhibitors of human PDE4A or PDE5A. There are a number of parameters one needs to set to actually do this (the end-point, the affinity cutoff, etc. Specifically here we have selected high confidence assay to target assignments (the a2t.confidence=7 bit), and where the potency is better than 1000nM for an IC50 measurement. This is a pretty generic query, and piping in the target tid to this covers a surprisingly frequent use the the data.

select  act.molregno, act.activity_type, act.relation as operator, act.standard_value, act.standard_units, 
   td.pref_name, td.organism, 
   a.description as assay_description, 
   docs.journal, docs.year, docs.volume, docs.first_page, docs.pubmed_id, cr.compound_key
from  target_dictionary td, 
   assay2target a2t,    
   assays a, 
   activities act, 
   docs, 
   compound_records cr
where  td.tid in (3,276)
and  td.tid = a2t.tid
and  a2t.confidence = 7
and  a2t.assay_id = a.assay_id
and  a2t.assay_id = act.assay_id
and  act.doc_id = docs.doc_id
and  act.record_id = cr.record_id
and  act.activity_type = 'IC50'
and  act.relation in( '=', '<')
and  act.standard_units = 'nM'
and  act.standard_value <=1000
and  a.assay_type = 'B';

Here is a modified form to retrieve just the compound identifiers (molregno)

select  distinct act.molregno
from  target_dictionary td, 
  assay2target a2t,    
  assays a,  
  activities act
where  td.tid in (3,276)
and  td.tid = a2t.tid
and  a2t.confidence = 7
and  a2t.assay_id = a.assay_id
and  a2t.assay_id = act.assay_id
and  act.activity_type = 'IC50'
and  act.relation in( '=', '<')
and  act.standard_units = 'nM'
and  act.standard_value <=1000
and  a.assay_type = 'B';

Also a common requirement is to get the associated molecule structures from the database - here the syntax is for an sdf format output and the query does not rely on any fancy chemical cartridge manipulation (since we store the molfiles in a clob called molfile in the COMPOUNDS table). The query here simply retrieves the structures, and not the associated bioactivity data. The goofy looking concatenations (||) and newlines (chr(10)) just make sure that a validly formatted sdf file emerges at the end.

select  c.molfile || chr(10) || '> ' ||chr(10)|| c.molregno||chr(10)||chr(10)||'$$$$'||chr(10)
from  compounds c, 
  (select distinct act.molregno
  from  target_dictionary td, 
    assay2target a2t,    
    assays a, 
   activities act
 where  td.tid in (3,276)
 and  td.tid = a2t.tid
 and  a2t.confidence = 7
 and  a2t.assay_id = a.assay_id
 and  a2t.assay_id = act.assay_id
 and  act.activity_type = 'IC50'
 and  act.relation in( '=', '<')
 and  act.standard_units = 'nM'
 and  act.standard_value <=1000
 and  a.assay_type = 'B') t1
where  t1.molregno = c.molregno;

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEM...