Skip to main content

New Drug Approvals - Pt. XI - Prasugrel Hydrochloride (Effient)

The latest approval this year is Prasugrel (USAN), approved on July 10th under the trade name Effient. Prasugrel is a P2Y12 receptor platelet inhibitor indicated for the reduction of thrombotic cardiovascular events (including stent thrombosis) in patients with acute coronary syndrome who are to be managed with percutaneous coronary intervention. Prasugrel is the third to market in the thienopyridine class of ADP receptors antagonists, after Ticlopidine (trade name Ticlid) and Clopidogrel (trade name Plavix). Prasugrel is a prodrug; meaning that Prasugrel is not therapeutically active itself, but is metabolized in the body to give the pharmacologically active metabolite. Additionally, the metabolically activated form of Prasugrel irreversibly binds to its receptor - this means that it forms an unbreakable chemical bond to its target, again this is quite an unusual feature.

Prasugrel is a small molecule drug (Molecular Weight of 343.4 g.mol-1 for Prasugrel itself and 409.9 g.mol-1 for the HCl salt), is fully Rule-of-Five compliant, lipophilic and insoluble in water. Prasugrel has a good oral absorption (≥79% absorbed), an elimination half-life of ~7 hours (for the active metabolite, see below) and a high plasma protein binding of 98%. The activation of Prasugrel is rapid and complex, being first metabolized first to a thiolactone, which is then converted to the active metabolite, primarily by CYP3A4 and CYP2B6 and to a lesser extent by CYP2C9 and CYP2C19. CYP2B6 is quite an unusual cytochrome p450 to be involved in drug metabolism. Prasugrel's active metabolite has an apparent volume of distribution of 44-68 L and an apparent clearance of 112-166 L/h. Prasugrel's excretion is mostly renal (68%), being excreted as inactive metabolites. Recommended dosage is initially a 60 mg once a day 'loading dose', continuing at 10 mg once daily, in combination with 75-325 mg of aspirin. Full prescribing information can be found here.

Prasugrel has a boxed warning (colloquially know as 'black box').

The chemical structure is 5-[(1RS)-2-cyclopropyl-1-(2-fluorophenyl)-2-oxoethyl]-4,5,6,7-tetrahydrothieno[3,2-c]pyridin-2-yl acetate. The molecule contains a piperidine ring fused with a thiophene ring (the common feature between to the thienopyridine class of ADP receptors). It also contains a racemic center adjacent to the piperidine nitrogen. Since the drug is racemic, the stereoisomers have different pharmacological activity and different metabolic properties. The remainder of the molecule is quite rigid, with few rotational bonds.

Prasugrel canonical SMILES: Fc1ccccc1C(N3Cc2c(sc(OC(=O)C)c2)CC3)C(=O)C4CC4 Prasugrel InChI: InChI=1/C20H20FNO3S/c1-12(23)25-18-10-14-11-22(9-8-17(14)26-18)19 (20(24)13-6-7-13)15-4-2-3-5-16(15)21/h2-5,10,13,19H,6-9,11H2,1H3 Prasugrel InChIKey: DTGLZDAWLRGWQN-UHFFFAOYAR Prasugrel CAS registry: 150322-43-3 Prasugrel ChemDraw: Prasugrel.cdx

The product is marketed by Eli Lilly and Company and Daiichi Sankyo, Inc. and manufactured by Eli Lilly and Company. The product website is www.effient.com.

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d