Skip to main content

New Drug Approvals - Pt. XXIV - Bepotastine Besilate (Bepreve)

We're mopping up a few drug approvals from 2009 we have not yet covered yet as monographs... Approved on September 8th 2009 was Bepotastine Besilate, marketed under the trade name Bepreve. Bepotastine is a topical, selective and non-sedating histamine (H1) receptor antagonist indicated in the treatment of itching associated with allergic conjunctivitis. Through the H1 binding, Bepotastine has broad range of anti-inflammatory effects - a stabilizing effect on mast cells, inhibition of eosinophil migration and interleukin-5 (IL-5), leukotriene B4 (LTB4) and platelet activating factor (PAF) release. Bepotastine has been previously approved in Japan, under the trade name Talion, for allergic rhinitis (2000) and urticaria and skin pruritus (2002). Bepotastine is a chirally pure, synthetic small molecule drug (Molecular Weight 388.89 g.mol-1 for Bepotastine itself and 547.06 g.mol-1 for the dosed besilate salt), is Rule-of-Five compliant and is delivered as an ophthalmic solution. Bepotastine has a low protein binding of approximately 55%, is minimally metabolized by CYP450 isozymes and elimination is mainly through renal excretion (approximately 75-90% excreted unchanged in urine). The recommended dosage is one drop directly to the infected eye(s) twice a day. The prescribing information can be found here. The structure (+)-4-[[(S)-p-chloro-alpha-2-pyridylbenzyl]oxy]-1-piperidine butyric acid, with no unusual reactive features. There is a single stereocenter in the structure, and Bepotastine is dosed as the (+) enantiomer. The physicochemistry will be dominated by the Zwitterionic nature of the molecule - a molecule of nett neutral charge, but which contains compensatory charge centers - in this case the basic nitrogen of the central piperidine ring, and the carboxylic acid (on the far right of the compound figure).
NAME="Bepotastine"
DRUG_TARGET="MSLPNSSCLLEDKMCEGNKTTMASPQLMPLVVVLSTICLVTVGLNLLVLYAVRSERKLHT
VGNLYIVSLSVADLIVGAVVMPMNILYLLMSKWSLGRPLCLFWLSMDYVASTASIFSVFI
LCIDRYRSVQQPLRYLKYRTKTRASATILGAWFLSFLWVIPILGWNHFMQQTSVRREDKC
ETDFYDVTWFKVMTAIINFYLPTLLMLWFYAKIYKAVRQHCQHRELINRSLPSFSEIKLR
PENPKGDAKKPGKESPWEVLKRKPKDAGGGSVLKSPSQTPKEMKSPVVFSQEDDREVDKL
YCFPLDIVHMQAAAEGSSRDYVAVNRSHGQLKTDEQGLNTHGASEISEDQMLGDSQSFSR
TDSDTTTETAPGKGKLRSGSNTGLDYIKFTWKRLRSHSRQYVSGLHMNRERKAAKQLGFI
MAAFILCWIPYFIFFMVIAFCKNCCNEHLHMFTIWLGYINSTLNPLIYPLCNENFKKTFK
RILHIRS"
SMILES="Clc1ccc(cc1)C(OC2CCN(CCCC(=O)O)CC2)c3ncccc3"
InChI="InChI=1S/C21H25ClN2O3/c22-17-8-6-16(7-9-17)21(19-4-1-2-12-23-19)27-18-
10-14-24(15-11-18)13-3-5-20(25)26/h1-2,4,6-9,12,18,21H,3,5,10-11,
13-15H2,(H,25,26)"
InChIKey="YWGDOWXRIALTES-UHFFFAOYSA-N"
ChemDraw=http://www.ebi.ac.uk/chembl/downloads/Bepotastine.cdx
Bepreve is marketed by IstaVision and the product website is here

Comments

Popular posts from this blog

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen

In search of the perfect assay description

Credit: Science biotech, CC BY-SA 4.0 Assays des cribe the experimental set-up when testing the activity of drug-like compounds against biological targets; they provide useful context for researchers interested in drug-target relationships. Ver sion 33 of ChEMBL contains 1.6 million diverse assays spanning ADMET, physicochemical, binding, functional and toxicity experiments. A set of well-defined and structured assay descriptions would be valuable for the drug discovery community, particularly for text mining and NLP projects. These would also support ChEMBL's ongoing efforts towards an  in vitro  assay classification. This Blog post will consider the features of the 'perfect' assay description and provide a guide for depositors on the submission of high quality data. ChEMBL's assays are typically structured with the overall aim, target, and method .  The ideal assay description is succinct but contains all the necessary information for easy interpretation by database u