Skip to main content

2010 New Drug Approvals - Pt. XII - Pegloticase (Krystexxa)






ATCC: M04AX02


On September 14th 2010, the FDA approved Pegloticase under the trade name Krystexxa. Pegloticase is a recombinant enzyme for the treatment of gout and can replace xanthine oxidase (XO) inhibitors for patients who do not respond to or cannot tolerate treatment with xanthine oxidase inhibitors. 

Gout is a painful affliction caused by microscopic needle-shaped crystals of sodium urate which precipitate in joints and tendons and stimulate a local inflammatory response. These attacks of inflammatory arthritis not only cause pain and stiffness of the joint, but, if left untreated for years, also damage the cartilage and surrounding tissue. Hard, non-painful deposits of crystalline uric acid known as tophi occur in the joints and sometimes the kidney. 

Gout is generally associated with obesity, hypertension, insulin resistance and hyperlipidaemia. In more than half of the cases of diagnosed gout, patients have elevated blood levels of uric acid.

Conventionally, acute gout attacks are ameliorated by administration of non-steroidal anti-inflammatory drugs (NSAIDs) and the levels of uric acid are kept low by restricting diet, and also administration of inhibitors of xanthine oxidase (UniProt: P47989, ChEMBL: 149) such as allopurinol and febuxostat. Some patients however cannot tolerate conventional xanthine oxidase inhibitors because of severe allergic reactions. It is this group of patients that pegloticase has been approved for.

Pegloticase is a recombinant uricase, an enzyme that lowers the levels of puric acid by catalyzing the oxidation of puric acid to allantoin (see image), which in turn is readily eliminated via the kidneys. The uricase enzyme exists in all mammals but is not expressed in humans (Entrez Id of the pseudo-gene: 391051) and many primates. Therefore, pegloticase reduces uric acid levels through a catabolic function that has been relatively recently 'lost' in human evolution.





Pegloticase is a modified version of the mammalian uricase and is expressed in E.coli. Each uricase subunit is conjugated to monomethoxy-polyethylene-glycol (mPEG) and the enzyme occurs as a tetramer weighing ~540 kDa.

Eight milligram of Pegloticase are administered every two weeks as a parenteral infusion. In a single-dose, dose-ranging trial, Pegloticase reduced uric acid levels in a dose dependent manner and for doses of 8mg and 12mg, uric acid levels were kept below 6mg/dL for more than 300 hours (n=4).

Krystexxa comes with a boxed warning regarding anaphylaxis and infusion reactions as in clinical trials it caused anaphylaxis in 6.5% of patients treated with Krystexxa every 2 weeks and infusion reactions in 26% of these patients.

The sequence of Peglocitase is very similar to that of pig uricase (UniProt:P16164)

>Peglocitase
TYKKNDEVEFVRTGYGKDMIKVLHIQRDGKYHSIKEVATTVQLTLSSKKDYLHGDNSDVIPTDTIKNTVNVL
AKFKGIKSIETFAVTICEHFLSSFKHVIRAQVYVEEVPWKRFEKNGVKHVHAFIYTPTGTHFCEVEQIRNGP
PVIHSGIKDLKVLKTTQSGFEGFIKDQFTTLPEVKDRCFATQVYCKWRYHQGRDVDFEATWDTVRSIVLQKF
AGPYDKGEYSPSVQKTLYDIQVLTLGQVPEIEDMEISLPNIHYLNIDMSKMGLINKEEVLLPLDNPYGKITG
TVKRKLSSRL
Pegloticase must not be given to patients suffering from glucose-6-phosphate dehydrogenase (G6PDH) deficiency as there is a risk of hemolysis and methaemoglobinemia.

Krystexxa is marketed by Savient Pharmaceuticals Inc., the full prescribing information can be found here.

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...