Skip to main content

New Drug Approvals 2011 - Pt. IV Human coagulation Factor XIII Concentrate (CorifactTM)






ATC code : B02BD07

On February 17th 2011, the FDA approved human coagulation Factor XIII (FXIII) Concentrate as an orphan drug under the trade name Corifact (ATC code B02BD07) to treat congenital Factor XIII deficiency (OMIM:134570 and OMIM:134580, ICD-10:D68.2). The incidence of this rare condition is 1 in 1 to 5 million, making it the rarest form of hemophilia. The genetic deficiency leads to defective fibrin crosslinking, the terminal step of the coagulation cascade which leads to blood forming clots to deplete its loss from damaged vessels.

Prior to US approval, FXIII Concentrate had already been marketed in Europe, as Fibrogammin P,  developed by CSL Behring of Marburg, Germany. Recently, recombinant FXIII (rFXIII, Novo Nordisk, Bagsværd, Denmark) has completed phase 3 clinical trials.

FXIII exists naturally as a secreted, tetrameric protein (with composition A2B2) with a molecular weight of ca. 320 kDa. The tetramer consists of twice two catalytically active transglutaminase (A subunit, Uniprot:P00488) (E.C. 2.3.2.13) and an enzymatically inactive carrier (B subunit, Uniprot:P05160) subunits in the blood plasma, or as a catalytically active dimer (A2) inside platelets, monocytes, macrophages and their respective precursor cells. The B-chain holds the A chain dimer in an inactive state, and also shields the A-chain from proteolytic degradation in the plasma.

>Corifact A chain
GVNLQEFLNVTSVHLFKERWDTNKVDHHTDKYENNKLIVRRGQSFYVQIDFSRPYDPRRD
LFRVEYVIGRYPQENKGTYIPVPIVSELQSGKWGAKIVMREDRSVRLSIQSSPKCIVGKF
RMYVAVWTPYGVLRTSRNPETDTYILFNPWCEDDAVYLDNEKEREEYVLNDIGVIFYGEV
NDIKTRSWSYGQFEDGILDTCLYVMDRAQMDLSGRGNPIKVSRVGSAMVNAKDDEGVLVG
SWDNIYAYGVPPSAWTGSVDILLEYRSSENPVRYGQCWVFAGVFNTFLRCLGIPARIVTN
YFSAHDNDANLQMDIFLEEDGNVNSKLTKDSVWNYHCWNEAWMTRPDLPVGFGGWQAVDS
TPQENSDGMYRCGPASVQAIKHGHVCFQFDAPFVFAEVNSDLIYITAKKDGTHVVENVDA
THIGKLIVTKQIGGDGMMDITDTYKFQEGQEEERLALETALMYGAKKPLNTEGVMKSRSN
VDMDFEVENAVLGKDFKLSITFRNNSHNRYTITAYLSANITFYTGVPKAEFKKETFDVTL
EPLSFKKEAVLIQAGEYMGQLLEQASLHFFVTARINETRDVLAKQKSTVLTIPEIIIKVR
GTQVVGSDMTVTVQFTNPLKETLRNVWVHLDGPGVTRPMKKMFREIRPNSTVQWEEVCRP
WVSGHRKLIASMSSDSLRHVYGELDVQIQRRPSM
>Corifact B chain
EEKPCGFPHVENGRIAQYYYTFKSFYFPMSIDKKLSFFCLAGYTTESGRQEEQTTCTTEG
WSPEPRCFKKCTKPDLSNGYISDVKLLYKIQENMRYGCASGYKTTGGKDEEVVQCLSDGW
SSQPTCRKEHETCLAPELYNGNYSTTQKTFKVKDKVQYECATGYYTAGGKKTEEVECLTY
GWSLTPKCTKLKCSSLRLIENGYFHPVKQTYEEGDVVQFFCHENYYLSGSDLIQCYNFGW
YPESPVCEGRRNRCPPPPLPINSKIQTHSTTYRHGEIVHIECELNFEIHGSAEIRCEDGK
WTEPPKCIEGQEKVACEEPPFIENGAANLHSKIYYNGDKVTYACKSGYLLHGSNEITCNR
GKWTLPPECVENNENCKHPPVVMNGAVADGILASYATGSSVEYRCNEYYLLRGSKISRCE
QGKWSSPPVCLEPCTVNVDYMNRNNIEMKWKYEGKVLHGDLIDFVCKQGYDLSPLTPLSE
LSVQCNRGEVKYPLCTRKESKGMCTSPPLIKHGVIISSTVDTYENGSSVEYRCFDHHFLE
GSREAYCLDGMWTTPPLCLEPCTLSFTEMEKNNLLLKWDFDNRPHILHGEYIEFICRGDT
YPAELYITGSILRMQCDRGQLKYPRCIPRQSTLSYQEPLRT

Several crystal structures are available for the catalytically active A chain dimer of FXIII, e.g. PDBe:1EVU.

FXIII is activated by proteolytic cleavage of the first 37 N-terminal amino acids by thrombin (also known as factor II). In presence of calcium ions, the carrier subunits dissociate, leading to a conformational change exposing the catalytic center of the A chain, thus capable of crosslinking of fibrin molecules to form an insoluble clot. In order to restore natural coagulaton, patients suffering from FXIII deficiency can therefore be treated with exogenous FXIII.

The half-life (t1/2) of Corifact is 6.6 days, with a steady state Volume of distribution (Vss) of 52 mL.kg-1, and a Clearance (Cl) of 0.25 mL.hr-1.kg-1.

Corifact is made from pooled human donor blood plasma, and is supplied as lyophilized concentrate for intravenous administration after reconstitution with sterile water. The recommended initial dosing is specific to the patients body weight and existing blood coagaultion parameters. Typical dosage is 40 IU per kg body weight and is repeated every 28 days. In the subsequent dosing, FXIII activity levels are monitored, and adjusted to achieve the intended trough FXIII activity level. As a human blood product, the production process of Corifact is monitored to minimize possible contamination with virus (e.g., HIV, HAV, HBV, and HCV), and the infective agent of CJD.

The full prescribing information can be found here.

The license holder for Corifact is CSL Behring, and the product website is here.

Comments

Popular posts from this blog

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...