ChEMBL Resources

The SARfaris: GPCR, Kinase, ADME

Sunday, 12 June 2011

Bioinformatics Training Course course KDMC11, July 12th - 15th, 2011, Portugal

There is an interesting course being run in Oeiras, Portugal in July.

About one hundred million different chemical compounds have already been synthesized. The number of theoretically possible organic molecules exceeds the number of atoms in the universe. This raises a number of questions, including:
  • Where can one find information about chemical structures and their properties?
  • How can one efficiently retrieve such information?
  • Which molecules, if synthesized, could potentially assist the fight against certain types of cancer?
  • Why is it that some pharmacological targets are considered more promising for the prevention or treatment of Alzheimer?s disease than others?
  • Are there ways to better predict ADME(T) properties of synthesized molecules?
  • Why does such a significant proportion of launched drugs originate from structures found in natural products?
  • Why can multi-target pharmacological agents be superior to single-targeted ones?
  • Can new medical applications be found for old drugs?
  • Why is the alliance of chemo- and bioinformatics beneficial to the life sciences, biotech and pharma industries?
  • What are the major challenges facing chemoinformatics now?
During this course participants will learn how to efficiently find answers to these and many other related questions. Attendees will be instructed in the use of the relevant databases and associated software to:
  • Represent compounds and (bio)chemical reactions using chemical information in a computer.
  • Search for information about chemical structures and their properties in public and commercially available databases.
  • Perform similarity searches with an understanding of the advantages and disadvantages of the various methods.
  • Prepare data sets for further (Q)SAR/(Q)SPR analysis, estimating the quality and completeness of the data.
  • Create and validate (Q)SAR/(Q)SPR models for finding and optimization of lead compounds.
  • Use the above techniques for virtual screening and design of chemical compounds with the required properties.
Target audience
Researchers working in life sciences, professionals in the pharmaceutical and biotech industries: organic, medicinal, pharmaceutical chemists, biochemists, molecular biologists, pharmacologists, toxicologists, and others.

Information on all GTPB courses can be found at

No comments: