Skip to main content

New Drug Approvals 2011 - Pt. XXV crizotinib (Xalkori®)





ATCC: L01XE15
Wikipedia: Crizotinib

On the August 26th 2011, the FDA approved crizotinib (trade name:Xalkori® Research code: PF-02341066), an anaplastic lymphoma kinase (ALK) inhibitor for the treatment of patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) that is ALK-positive as detected by an approved FDA-approved test.


Non-small cell lung carcinomas (NSCLC) are cancers of the epithelial cells in the lung and describe all types of lung carcinomas other than small cell carcinomas. NSCLCs make up 88% of all lung carcinomas (see Cancer Research UK pages) and comprise genetically distinct classes of cancer, the most common are: Lung adenocarcinoma, large cell carcinoma and squamous cell carcinoma. Across the NSCLC types, some tumors harbour an ALK fusion protein. The EML4-ALK fusion gene has been shown to be affect the outcome of drug response and cells show resistance to EGFR inhibitors.


Crizotinib is an orally-dosed receptor tyrosine kinase inhibitor with significant activity against ALK (UniProt:Q9UM73, CHEMBL4247), HGFR (also known as c-Met) (Uniprot:P08581 CHEMBL3717) and RON (UniProt:Q04912, CHEMBL2689), and it is the first in class agent against any of these targets. However, ALK is the main targeted protein in these ALK-dependent, EGFR inhibitor resistant cancers. ALK is a trans-membrane receptor tyrosine kinase with the regulatory domains being extracellular and the kinase catalytic domain intracellular. The amino-acid sequence of the full wild type kinase is:

>ALK (full length wild type, kinase domain in red)
MGAIGLLWLLPLLLSTAAVGSGMGTGQRAGSPAAGPPLQPREPLSYSRLQRKSLAVDFVV
PSLFRVYARDLLLPPSSSELKAGRPEARGSLALDCAPLLRLLGPAPGVSWTAGSPAPAEA
RTLSRVLKGGSVRKLRRAKQLVLELGEEAILEGCVGPPGEAAVGLLQFNLSELFSWWIRQ
GEGRLRIRLMPEKKASEVGREGRLSAAIRASQPRLLFQIFGTGHSSLESPTNMPSPSPDY
FTWNLTWIMKDSFPFLSHRSRYGLECSFDFPCELEYSPPLHDLRNQSWSWRRIPSEEASQ
MDLLDGPGAERSKEMPRGSFLLLNTSADSKHTILSPWMRSSSEHCTLAVSVHRHLQPSGR
YIAQLLPHNEAAREILLMPTPGKHGWTVLQGRIGRPDNPFRVALEYISSGNRSLSAVDFF
ALKNCSEGTSPGSKMALQSSFTCWNGTVLQLGQACDFHQDCAQGEDESQMCRKLPVGFYC
NFEDGFCGWTQGTLSPHTPQWQVRTLKDARFQDHQDHALLLSTTDVPASESATVTSATFP
APIKSSPCELRMSWLIRGVLRGNVSLVLVENKTGKEQGRMVWHVAAYEGLSLWQWMVLPL
LDVSDRFWLQMVAWWGQGSRAIVAFDNISISLDCYLTISGEDKILQNTAPKSRNLFERNP
NKELKPGENSPRQTPIFDPTVHWLFTTCGASGPHGPTQAQCNNAYQNSNLSVEVGSEGPL
KGIQIWKVPATDTYSISGYGAAGGKGGKNTMMRSHGVSVLGIFNLEKDDMLYILVGQQGE
DACPSTNQLIQKVCIGENNVIEEEIRVNRSVHEWAGGGGGGGGATYVFKMKDGVPVPLII
AAGGGGRAYGAKTDTFHPERLENNSSVLGLNGNSGAAGGGGGWNDNTSLLWAGKSLQEGA
TGGHSCPQAMKKWGWETRGGFGGGGGGCSSGGGGGGYIGGNAASNNDPEMDGEDGVSFIS
PLGILYTPALKVMEGHGEVNIKHYLNCSHCEVDECHMDPESHKVICFCDHGTVLAEDGVS
CIVSPTPEPHLPLSLILSVVTSALVAALVLAFSGIMIVYRRKHQELQAMQMELQSPEYKL
SKLRTSTIMTDYNPNYCFAGKTSSISDLKEVPRKNITLIRGLGHGAFGEVYEGQVSGMPN
DPSPLQVAVKTLPEVCSEQDELDFLMEALIISKFNHQNIVRCIGVSLQSLPRFILLELMA
GGDLKSFLRETRPRPSQPSSLAMLDLLHVARDIACGCQYLEENHFIHRDIAARNCLLTCP
GPGRVAKIGDFGMARDIYRASYYRKGGCAMLPVKWMPPEAFMEGIFTSKTDTWSFGVLLW
EIFSLGYMPYPSKSNQEVLEFVTSGGRMDPPKNCPGPVYRIMTQCWQHQPEDRPNFAIIL
ERIEYCTQDPDVINTALPIEYGPLVEEEEKVPVRPKDPEGVPPLLVSQQAKREEERSPAA
PPPLPTTSSGKAAKKPTAAEISVRVPRGPAVEGGHVNMAFSQSNPPSELHKVHGSRNKPT
SLWNPTYGSWFTEKPTKKNNPIAKKEPHDRGNLGLEGSCTVPPNVATGRLPGASLLLEPS
SLTANMKEVPLFRLRHFPCGNVNYGYQQQGLPLEAATAPGAGHYEDTILKSKNSMNQPGP
The ELM4-ALK translocation protduces a chimeric protein with the N-terminal part of ELM4 and the catalytic region of ALK. This chimeria is constitutively active causing unregulated proliferation (Soda et al)

The structure of ALK in complex with crizotinib has been determined (2XP2)

ALK and other proteins inhibited by crizotinib are members of the large protein kinase family, the target of several other recently approved drugs - with the approval of crizotinib there are now 12 US approved small molecule protein kinase inhibitors (Imatinib, Gefitinib, Erlotinib, SorafenibDasatinib, Sunitinib, Nilotinib, LapatinibPazopanib, Vandetanib & Vemurafenib), with over an additional 300 protein kinase inhibitors that have progressed to clinical trials.




The molecular formula for crizotinib is C21H22Cl2FN5O, with a molecular weight of 450.34 Da. (IUPAC: (R)-3-[1-(2,6- Dichloro-3-fluorophenyl)ethoxy]-5-[1-(piperidin-4-yl)-1H-pyrazol-4-yl]pyridin-2-amine, Canonical SMILES:CC(C1=C(C=CC(=C1Cl)F)Cl)OC2=C(N=CC(=C2)C3=CN(N=C3)C4CCNCC4)N, InChI key:KTEIFNKAUNYNJU-GFCCVEGCSA-N, Chemspider:9801307, PubChem:11626560). It is fully rule of five compliant. Crizotinib has two ionizable centres with a pKa of 9.4 (for the piperidinium cation) and 5.6 (for the pyridinium cation). The experimental logD (octanol/water) at pH 7.4 is 1.65. Crizotinib is a chirally pure, synthetic small molecule drug.


Standard dosing of Crizotinib is 250mg twice daily (so a 500 mg daily dose - equivalent to 1,110 umol). The mean absolute bioavailability of Crizotinib is 43% following the administration of a single 250 mg oral dose. Crizotinib shows a median time to achieve peak concentration (Tmax) of 4 to 6 hours. Following crizotinib 250 mg twice daily dosing, steady state drug levels are reached within 15 days. The volume of distribution (Vss) of crizotinib is 1,772 L (following intravenous administration of a 50 mg dose) - so crizotinib is extensively distribution into tissues from the plasma; plasma protein binding (ppb) is 91%, and it is a substrate for  P-glycoprotein (P-gp).


Crizotinib is predominantly metabolized by CYP3A4 and CYP3A5. The primary metabolic pathways in humans are oxidation of the piperidine ring to crizotinib lactam and O-dealkylation, followed by subsequent Phase 2 conjugation of O-dealkylated metabolites. Crizotinib is an inhibitor of CYP3A. The mean apparent plasma terminal half-life of crizotinib iss 42 hours, with an apparent clearance (CL/F) of 100 L/hr following a single dose, or 60 L/hr for the 250 mg twice daily standard dosing - this is most likely due to inhibition of CYP3A4/5.


Crizotinib is marketed by Pfizer, full prescribing information can be found here.

Comments

Popular posts from this blog

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...