Skip to main content

New Drug Approvals 2011 - Pt. XXVII Deferiprone (FerriproxTM)




 
ATC code V03AC02 
Wikipedia Deferiprone

On October 14th, 2011 FDA announced the approval of Deferiprone (trade name: FerriproxTM) for the treatment of iron overload which is potentially fatal in patients with thalassemia. Deferiprone is an oral iron chelating agent, binding excess iron in the blood and thus making it available to excretion from the body. Thalassaemia is a inherited (mostly autosomal recessive) blood disease that can lead to anemia by causing the formation of abnormal hemoglobin molecules not able to properly bind and release oxygen. Thalassaemia (OMIM: 141800 (α-) / 141900 (β-)) is sub-classified according to which of the subunits of the hetero-tetrameric (2α/2β, UniProt: P69905 / P68871) hemoglobin is affected, contrary to sickle-cell anaemia (OMIM: 603903) which results exclusively from a specific mutation in the β subunit. The primary treatment of thalassaemia major, the severe form of β-thalassaemia, requires frequent blood transfusions to establish stable levels of functional hemoglobin but results in high levels of iron accumulating and impairing organ function. Thus, the secondary treatment aims on reducing the toxic iron levels by binding excess iron utilizing an iron chelating agent such as Deferoxamine (ChEMBL ID: CHEMBL556) requiring parenteral administration; Deferiprone has the desirable property of being orally available.

Deferiprone (3-hydroxy-1,2-dimethylpyridin-4(1H)-one, canonical SMILES: CN1C=CC(=O)C(=C1C)O, Standard InChI: InChI=1S/C7H9NO2/c1-5-7(10)6(9)3-4-8(5)2/h3-4,10H,1-2H3 , ChEMBL ID: CHEMBL556, CAS number: 30652-11-0, PubChem: CID 2972, ChemSpider: 2866) is a very simple synthetic small molecule with molecular weight of 139.152 Da, it has no rotatable bonds, two hydrogen bond acceptors, one hydrogen bond donor, ALogP of -0.14 and is thus fully rule-of-five compliant. 

Ferriprox is dosed as 500 mg tablets and administred orally three times daily in doses of 25 mg/kg to 33 mg/kg body weight (rounded to the nearest half-tablet), resulting in a daily molar dose of ~38-50 mmol for a 70 kg individual. Common adverse reactions include chromaturia, nausea, vomiting and abdominal pain, among others. Ferriprox is not suitable for pregnant or nursing women. Ferriprox reaches a maximum concentration (Cmax) of 20 mcg/mL, has an elimination half life (t1/2) of 1.9 hours and is excreted renally. The volume of distribution is 1.6 L/kg and 1 L/kg in thalassaemia patients and healthy subjects, respectively. Peak serum concentrations are reached 2 to 4 hours after administration.

Ferriprox has been issued a boxed warning for its potential to cause agranulocytosis/neutropenia, hematological disorders characterized by abnormally low numbers of white blood cells potentially leading to serious infections and death. 

Ferriprox is marketed and has been developed by Apotex

The full prescribing information can be found here. Prior to its approval in North America, Ferriprox has been approved and available in Europe and Asia for several years - approval in North America had been delayed considerably by safety concerns brought forward by a clinical researcher formerly involved in the clinical studies.

Comments

Popular posts from this blog

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...