Skip to main content

Drug Side Effect Prediction and Validation


There's a paper just published in Nature getting a lot of coverage on the internet at the moment from Novartis/UCSF, and for good reason - but as the cartoon above states, it will probably have less impact than news on Justin Bieber's new haircut, or the latest handbags from Christian Lacroix. It uses the SEA target prediction method, trained using ChEMBL bioactivity data in order to predict new targets (and then by association side effects) for existing drugs. These are then experimentally tested, and the results confirmed in a number of cases - this experimental validation is clearly complex and expensive, so it is great news that in silico methods can start to generate realistic and testable hypotheses for adverse drug reactions (there are also positive side effects too, and these are pretty interesting to look for using these methods as well).

The use of SEA as the target prediction method was inevitable given the authors involved, but following up on some presentations at this springs National ACS meeting in San Diego. There would also seem to be clear benefits in including other methods into linking a compound to a target - nearest neighbour using simple Tanimoto measures, and naive Bayes/ECFPP type approaches. The advantage of the SEA approach is that it seems to generalise better (sorry I can't remember who gave the talk on this), and so probably can make more comprehensive/complete predictions, and be less tied to the training data (in this case ChEMBL) - however as databases grow, these predictions will get a lot better. There will also be big improvements possible if other data adopts the same basic data model as ChEMBL (or something like the services in OpenPHACTS), so methods can pool across different data sources, including proprietary in-house data.

There are probably papers being written right now about a tournament/consensus multi-method approach to target prediction using an ensemble of the above methods. (If such a paper uses random forests, and I get asked to review it, it will be carefully stored in /dev/null) ;)

So some things I think are useful improvements to this sort of approach.

1) Inclusion of the functional assays from ChEMBL in predictions (i.e. don't tie oneself to a simple molecular target assay). The big problem here though is that although pooling of target bioassay data is straightforward - pooling/clustering of functional data is not.
2) Where do you set affinity thresholds, and how do the affinities related to the pharmacodyamics of the side-effects. My view is that there will be some interesting analyses of ChEMBL that maybe, just maybe, allow one to address this issue. Remember, we know quite a lot about the exposure of the human body, to  a given drug at a given dose level...
3) Consideration of (active) metabolites. It's pretty straightforward now to predict structures of likely metabolites (not at a quantitative level though) and this may be useful in drugs that are extensively metabolised in vivo.

Anyway, finish off with some eye-candy, a picture from the paper (hopefully allowed under fair use!).


And here's a reference to the paper, in good old Bell AT&T labs refer format - Mendeley-Schmendeley as my mother used to say when I was a boy.

%T Large-scale prediction and testing of drug activity on side-effect targets
%A E. Lounkine
%A M.J. Keiser
%A S. Whitebread
%A D. Mikhailov
%A J. Hamon
%A J.L. Jenkins
%A P. Lavan
%A E. Weber
%A A.K. Doak
%A S. Côté
%A B.K. Shoichet
%A L. Urban
%J Nature
%D 2012
%O doi:10.1038/nature11159

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEM...