Skip to main content

Drug Side Effect Prediction and Validation


There's a paper just published in Nature getting a lot of coverage on the internet at the moment from Novartis/UCSF, and for good reason - but as the cartoon above states, it will probably have less impact than news on Justin Bieber's new haircut, or the latest handbags from Christian Lacroix. It uses the SEA target prediction method, trained using ChEMBL bioactivity data in order to predict new targets (and then by association side effects) for existing drugs. These are then experimentally tested, and the results confirmed in a number of cases - this experimental validation is clearly complex and expensive, so it is great news that in silico methods can start to generate realistic and testable hypotheses for adverse drug reactions (there are also positive side effects too, and these are pretty interesting to look for using these methods as well).

The use of SEA as the target prediction method was inevitable given the authors involved, but following up on some presentations at this springs National ACS meeting in San Diego. There would also seem to be clear benefits in including other methods into linking a compound to a target - nearest neighbour using simple Tanimoto measures, and naive Bayes/ECFPP type approaches. The advantage of the SEA approach is that it seems to generalise better (sorry I can't remember who gave the talk on this), and so probably can make more comprehensive/complete predictions, and be less tied to the training data (in this case ChEMBL) - however as databases grow, these predictions will get a lot better. There will also be big improvements possible if other data adopts the same basic data model as ChEMBL (or something like the services in OpenPHACTS), so methods can pool across different data sources, including proprietary in-house data.

There are probably papers being written right now about a tournament/consensus multi-method approach to target prediction using an ensemble of the above methods. (If such a paper uses random forests, and I get asked to review it, it will be carefully stored in /dev/null) ;)

So some things I think are useful improvements to this sort of approach.

1) Inclusion of the functional assays from ChEMBL in predictions (i.e. don't tie oneself to a simple molecular target assay). The big problem here though is that although pooling of target bioassay data is straightforward - pooling/clustering of functional data is not.
2) Where do you set affinity thresholds, and how do the affinities related to the pharmacodyamics of the side-effects. My view is that there will be some interesting analyses of ChEMBL that maybe, just maybe, allow one to address this issue. Remember, we know quite a lot about the exposure of the human body, to  a given drug at a given dose level...
3) Consideration of (active) metabolites. It's pretty straightforward now to predict structures of likely metabolites (not at a quantitative level though) and this may be useful in drugs that are extensively metabolised in vivo.

Anyway, finish off with some eye-candy, a picture from the paper (hopefully allowed under fair use!).


And here's a reference to the paper, in good old Bell AT&T labs refer format - Mendeley-Schmendeley as my mother used to say when I was a boy.

%T Large-scale prediction and testing of drug activity on side-effect targets
%A E. Lounkine
%A M.J. Keiser
%A S. Whitebread
%A D. Mikhailov
%A J. Hamon
%A J.L. Jenkins
%A P. Lavan
%A E. Weber
%A A.K. Doak
%A S. Côté
%A B.K. Shoichet
%A L. Urban
%J Nature
%D 2012
%O doi:10.1038/nature11159

Comments

Popular posts from this blog

Using ChEMBL web services via proxy.

It is common practice for organizations and companies to make use of proxy servers to connect to services outside their network. This can cause problems for users of the ChEMBL web services who sit behind a proxy server. So to help those users who have asked, we provide the following quick guide, which demonstrates how to access ChEMBL web services via a proxy. Most software libraries respect proxy settings from environmental variables. You can set the proxy variable once, normally HTTP_PROXY and then use that variable to set other related proxy environment variables: Or if you have different proxies responsible for different protocols: On Windows, this would be: If you are accessing the ChEMBL web services programmatically and you prefer not to clutter your environment, you can consider adding the proxy settings to your scripts. Here are some python based recipes: 1. Official ChEMBL client library If you are working in a python based environment, we recommend

Multi-task neural network on ChEMBL with PyTorch 1.0 and RDKit

  The use and application of multi-task neural networks is growing rapidly in cheminformatics and drug discovery. Examples can be found in the following publications: - Deep Learning as an Opportunity in VirtualScreening - Massively Multitask Networks for Drug Discovery - Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set But what is a multi-task neural network? In short, it's a kind of neural network architecture that can optimise multiple classification/regression problems at the same time while taking advantage of their shared description. This blogpost gives a great overview of their architecture. All networks in references above implement the hard parameter sharing approach. So, having a set of activities relating targets and molecules we can train a single neural network as a binary multi-label classifier that will output the probability of activity/inactivity for each of the targets (tasks) for a given q

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

LSH-based similarity search in MongoDB is faster than postgres cartridge.

TL;DR: In his excellent blog post , Matt Swain described the implementation of compound similarity searches in MongoDB . Unfortunately, Matt's approach had suboptimal ( polynomial ) time complexity with respect to decreasing similarity thresholds, which renders unsuitable for production environments. In this article, we improve on the method by enhancing it with Locality Sensitive Hashing algorithm, which significantly reduces query time and outperforms RDKit PostgreSQL cartridge . myChEMBL 21 - NoSQL edition    Given that NoSQL technologies applied to computational chemistry and cheminformatics are gaining traction and popularity, we decided to include a taster in future myChEMBL releases. Two especially appealing technologies are Neo4j and MongoDB . The former is a graph database and the latter is a BSON document storage. We would like to provide IPython notebook -based tutorials explaining how to use this software to deal with common cheminformatics p

Webinar: using an API to access ChEMBL

  If you use ChEMBL via the interface and are interested in programmatic approaches then join  our  webinar   on November 10th @ 15:30 to find out more ! In this webinar, we'll provide an overview of the ChEMBL and UniChem APIs and work through some common examples. In the meantime, don’t forget that we have further documentation on our  web services  as well as a recent ChEMBL  webinar, a Blog and series of  FAQs .  Questions? Send us a message through the  Helpdesk .