Skip to main content

New Drug Approvals 2012 - Pt. XXIX - Pasireotide diaspartate (SIGNIFOR®)


ATC code: H01CB05
Wikipedia: Pasreotide

On December 14, the FDA approved Pasireotide diaspartate (SIGNIFOR®, Research CodeL SOM-230, CAS# 396091-73-9, Pub-Chem : CID 9941444, KEGG : D10147), a cyclohexide with pharmacologic properties mimicking those of natural hormone Somatostatin for treatment of adult patients with Cushing's disease (CD) for whom pituitary surgery is not an option or has not been curative.

Cushing's disease (CD) is a cause of Cushing's syndrome characterised by increased secretion of ACTH (adrenocorticotropic hormone) from the anterior pituitary. CD is a rare hormone disorder, and  recent statistics indicate that the annual incidence is somewhere between 1 and 10 per million and is 3 times more common in women than in men (from NEMDIS). This is most often as a result of pituitary adenoma or due to excess production of hypothalamus Corticotropin releasing hormone (CRH). More information can be found in Medscape.


The therapeutic activity of Pasireotide diaspartate is through binding to Somatostatin receptors (SSTRs). They belong to GPCR class of targets and there are five known SSTRs in human: SSTR1 (CHEMBL1917P30872), SSTR2 (CHEMBL1804P30874), SSTR3 (CHEMBL2028P32745), SSTR4 (CHEMBL1853P31391) and SSTR5 (CHEMBL1792P35346). These receptor subtypes are expressed in different tissues under normal physiological condition. Corticotroph tumor cells from CD patients frequently over express SSTR5, whereas the other receptor subtypes are often not expressed or expressed at lower levels. Pasireotide diaspartate has a 40-fold increased affinity to SSTR5 than other SSTR analogs binds and activates the receptors resulting in inhibition of ACTH secretion, which leads to decreased cortisol secretion.


Since the targets of this drug belong to same family of receptors (somatostatin receptors), multiple  sequence alignment of human SSTR1, 2, 3, 4 and 5 receptors was done using T-coffee which is shown above. The protein sequences (fasta format) of human SSTR1, 2, 3, 4 and 5 can be downloaded from this link here. (courtesy UniProt)


Standard InChI : 1/C58H66N10O9/c59-27-13-12-22-46-52(69)64-47(30-38-23-25-42(26-24-38)76-36-39-16-6-2-7-17-39)53(70)66-49(31-37-14-4-1-5-15-37)57(74)68-35-43(77-58(75)61-29-28-60)33-50(68)55(72)67-51(40-18-8-3-9-19-40)56(73)65-48(54(71)63-46)32-41-34-62-45-21-11-10-20-44(41)45/h1-11,14-21,23-26,34,43,46-51,62H,12-13,22,27-33,35-36,59-60H2,(H,61,75)(H,63,71)(H,64,69)(H,65,73)(H,66,70)(H,67,72)/t43-,46+,47+,48-,49+,50+,51+/m1/s1/f/h61,63-67H

Smiles : NCCCC[C@H]1C(N[C@H](C(N[C@H](C(N2[C@H](C(N[C@H](C(N[C@@H](C(N1)=O)CC1=CNC3=CC=CC=C13)=O)C1=CC=CC=C1)=O)C[C@H](C2)OC(NCCN)=O)=O)CC2=CC=CC=C2)=O)CC2=CC=C(C=C2)OCC2=CC=CC=C2)=O
Iupac Name : (2-Aminoethyl) carbamic acid (2R,5S,8S,11S,14R,17S,19aS)-11-(4-aminobutyl)-5-benzyl-8-(4-benzyloxybenzyl)-14-(1H-indol-3-ylmethyl)-4,7,10,13,16,19-hexaoxo-17-phenyloctadecahydro-3a,6,9,12,15,18-hexaazacyclopentacyclooctadecen-2-yl ester, di[(S)-2-aminosuccinic acid] salt


Pasireotide diaspartate is a Somatostatin analog and is cyclohexapeptide with pharmacologic properties mimicking those of the natural hormone somatostatin. The recommended dosage range of Pasireotide diaspartate is 0.3 to 0.9 mg administered as subcutaneous injection twice a day.

Pasireotide diaspartate demonstrates approximately linear pharmacokinetics for a dose range from 0.0025 to 1.5 mg in healthy patients with dose proportional Cmax and AUC and Tmax of 0.25 to 0.5 hrs. Apparent volume of distribution (Vz/F) was >100 L with plasma concentration of about 91%. Plasma protein binding was moderate (88%). It is shown to be metabolically stable in human liver and kidney and is eliminated mainly via hepatic clearance.

Full prescribing information can be found here.

The license holder is Novartis Pharmaceuticals, and the product website is www.signifor.com.

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid