Skip to main content

New Drug Approvals 2013 - Pt. V - Canagliflozin (INVOKANA™)



ATC Code: A10BX (incomplete)
Wikipedia: Canagliflozin
ChEMBL: CHEMBL2048484

On March 29th the FDA approved Canagliflozin (trade name INVOKANA™) to improve glycemic control for the treatment of diabetes type 2. Canagliflozin is to be used in combination with proper diet and exercise. Canagliflozin is a subtype 2 sodium-glucose transport protein (SGLT2, ChEMBL3884) inhibitor. Canagliflozin is a first-in-class drug with several others still in clinical trials

Target
SGLT2 is found in the proximal tubule of the nephron in the kidneys (as is paralog SGLT1, ChEMBL4979). SGLT2 one of the 5 known members of the sodium-glucose transporter proteins family. The transporter is responsible for 90 % of the total renal glucose reuptake (corresponding to 98 % of the uptake in the proximal convoluted tubule). The protein has a relatively low affinity for glucose compared to SGLT1 (2 mM versus 0.4 mM) but a higher capacity. Hence inhibition of this protein leads to a lowering of the glucose plasma concentration. SGLT2 is a 672 amino acid protein which can be found on Uniprot (P31639). The most similar PDB structure is the sodium/glucose costransporter from Vibrio parahaemolyticus (3DH4). 

The paralog SGLT1 (664 amino acids, 57.63% identical to SGLT2) is also found in the intestine where it is responsible for glucose uptake. Hence SGLT1 forms an important anti-target for Canagliflozin. 

Structure
Canagliflozin (CHEMBL2048484 ; Chemspider : 26333259 ;  Pubchem : 125299338 ; Unichem Identifier 1075025) is a small molecule drug with a molecular weight of 444.5 Da, an AlogP of 3.45, 5 rotatable bonds and does not violate the rule of 5.

Canonical SMILES : Cc1ccc(cc1Cc2ccc(s2)c3ccc(F)cc3)[C@@H]4O[C@H](CO)[C@@H](O)[C@H](O)[C@H]4O

InChi: InChI=1S/C24H25FO5S/c1-13-2-3-15(24-23(29)22(28)21(27)19(12-26)30-24)10-16(13)11-18-8-9-20(31-18)14-4-6-17(25)7-5-14/h2-10,19,21-24,26-29H,11-12H2,1H3/t19-,21-,22+,23-,24+/m1/s1

Contra-indications
Canagliflozin is contra-indicated when there is a history of serious hypersensitivity reactions to Canagliflozin or in cases of severe renal impairment, ESRD, or on dialysis.

Dosage
The recommended starting dose of Canagliflozin is 100 mg once daily, taken before the first meal of the day. The dose can be increased to 300 mg once daily in patients tolerating Canagliflozin. 100 mg should be dosed once daily who have an eGFR of 60 mL/min/1.73 m2 or greater and require additional glycemic control. Canagliflozin is limited to 100 mg once daily in patients who have an eGFR of 45 to less than 60 mL/min/1.73 m2.Canagliflozin should be discontinued if eGFR falls below 45 mL/min/1.73 m2.

Metabolism
O-glucuronidation is the major metabolic elimination pathway for canagliflozin, which is mainly glucuronidated by UGT1A9 and UGT2B4 to two inactive O-glucuronide metabolites. CYP3A4-mediated (oxidative) metabolism of canagliflozin is minimal (approximately 7%) in humans.

Excretion
Following administration of a single oral [14C]canagliflozin dose to healthy subjects, 41.5%, 7.0%, and 3.2%  of the administered radioactive dose was recovered in feces as canagliflozin, a hydroxylated metabolite, and an O-glucuronide metabolite, respectively. Enterohepatic circulation of canagliflozin was negligible. Approximately 33% of the administered radioactive dose was excreted in urine, mainly as O-glucuronide metabolites (30.5%). Less than 1% of the dose was excreted as unchanged canagliflozin in urine. Renal clearance of canagliflozin 100 mg and 300 mg doses ranged from 1.30 to 1.55 mL/min. Mean systemic clearance of canagliflozin was approximately 192 mL/min in healthy subjects following intravenous administration.

The license holder is Janssen Pharmaceuticals, Inc. and the full prescribing information can be found here.

Comments

Dr_OOze said…
What defines "first-in-class"? Is dapagliflozin not approved elsewhere?

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEM...