Skip to main content

myChEMBL on Bare Metal




myChEMBL is distributed as a Virtual Machine (VM), which is good because you can treat it like another file on your filesystem. It can be transmitted, copied, renamed, deleted, etc. The myChEMBL VM behaves like a sandbox, so software installed there can't harm your computer.

But there are sometimes costs associated with using a VM, for example VMs are usually several percent slower than the host they are running on. There are also a number of scenarios where using a VM may not optimal or even possible, for example:
  • You just want to enrich your existing machine with chemistry-related software
  • The only machine you have is itself virtual - VM provisioning software often prevents you from installing a VM within a VM
  • When performance is critical
In these cases you may not want the whole myChEMBL VM, only the software that it ships with.

Fortunately we have a script, that automates the process of creating our customized VM. But not only that - we keep it publicly available along with all other resources, necessary to build myChEMBL! The main entry point is a bash script called 'bootstrap.sh', which when executed it performs following steps:
  • Creates user called 'chembl' and adds it to sudoers list
  • Updates software distribution channels and upgrades OS
  • Installs common software libraries required by our tools
  • Installs python/ipython notebook/postgres DB
  • Sets up python environment using virtualenvwrapper/virtulenv
  • Downloads ChEMBL_18 data dump, and stores it in freshly created database
  • Installs RDKit and builds postgres cartridge
  • Installs and configures a web server and all resources that will be accessible via browser
  • Configures network
  • Adds some branding

How to use it?

Just run:

curl -s https://raw.githubusercontent.com/chembl/mychembl/master/bootstrap.sh | bash 

you can optionally wrap it with 'time' to know how long did it take to execute: 

time(curl -s https://raw.githubusercontent.com/chembl/mychembl/master/bootstrap.sh | bash) 

It takes about 6 hours on our machines, but we have fast internet connection. It could take 2-3 times longer on your connection, depending on bandwidth and your computer speed. The script is extremely verbose so you will easily notice what is being installed at the moment. Tip: you can redirect stdout/stderr to file(s) or even /dev/null to make it silent.

What takes the most time?

Depending on your configuration these are most time consuming operations performed during execution of the script:
  • Creating fingerprints and indexes for chemistry cartridge
  • Downloading ChEMBL_18 dump from EBI's FTP (917 MB)
  • Compiling libraries
Requirements

Currently 'bootstrap.sh' script was tested only on Ubuntu. It should work on every standard Ubuntu release since 12.04 (and probably Linux Mint as well). It's possible that the script will work fine (after some minor tweaks) with Debian since Ubuntu is based on it and they both use the same package manager. In future we are planning to make it work with other systems (CentOS and RedHat).

Furthermore, in order to execute this script you should have root privileges as it uses 'sudo' many times.

Is it safe?

What we are asking you to do is a "curl pipe sh" pattern, which may be of some security concern.
We believe this is fastest, most convenient and elegant way for majority of our users. If you trust:
  • Your internet connection (no man in the middle, would be hard anyway since we are using https here).
  • github.com.
  • us at ChEMBL (we hope so!)
If you are not convinced, you can do:
  1. curl -o bootstrap.sh  https://github.com/chembl/mychembl/blob/master/bootstrap.sh
  2. Carefully analyze contents, making sure there is no malware
  3. chmod +x bootstrap.sh
  4. ./bootstrap.sh
In that case, please note that this process can be recursive since, bootstrap.sh itself contains "curl pipe sh" pattern many times.

Let us know if you have any follow up questions about this post or about myChEMBL.

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEM...