Skip to main content

Should CAS numbers be in ChEMBL and/or UniChem?


A very quick survey to add excitement to either your holiday or work-day! None of these sucker links, where there appears a 0.24% complete progress bar on the second page, it's just a simple yes/no question on whether it's a good idea to add CAS registry numbers to ChEMBL and/or UniChem. No promises that we could deliver this, but depending on what you vote for, we will consider our options.

Update: Given the multiple channels out there, there are also comments on this on LinkedIn (in the ChUG - "ChEMBL User Group" group - why not join, if you're not already) and a couple on Google+.

Update 2: I'll let the poll run till the end of the week (Friday 8th 2014) - and then write something up on the results.

Comments

Egon Willighagen said…
I would argue against this. The CAS registry number is proprietary and not easy to use. Particularly, you are not allowed to collect them, though they have an informal limit at 10k registry numbers. This causes serious licensing issues with ChEMBL: you will have to make it a separate database and release it separate files. CC-BY-SA does not allow further restrictions such as those imposed for the CAS registry number.
jpo said…
I would disagree with the statement that I'm not allowed to collect them. How can anyone stop me from public sources of course. For example, is there a license carve out on the wikipedia CAS numbers? wikipedia content is CC-BY-SA, so perfect alignment with the current ChEMBL license. There are lots of other sources of large sets of CAS RNs - NCI resolver, ChemSpider, PubChem, UNII). There are also many on public, non-copyrighted documents, patents, INN/USAN documents, etc. To say that i'm not allowed to do anything with them, is just bonkers.

There is a formal limit of 10K, if you sign (or your organisation, with relevant scope of the license).

I'm of mixed view myself as to whether it is worth doing something with ChEMBL - hence to poll - see what the community thinks. For some of the stuff I'm currently working on (clinical candidate disclosures) they are required, and I have never seen a statement to say I can't reuse them in any document I've come across). The whole idea is that they (CAS RNs) are useful to cross reference chemical (and biological) objects with systems that choose to use them.

Sorry for briefish reply, holiday, and just back from the beach with wet trunks!
jpo said…
I would disagree with the statement that I'm not allowed to collect them. How can anyone stop me from public sources of course. For example, is there a license carve out on the wikipedia CAS numbers? wikipedia content is CC-BY-SA, so perfect alignment with the current ChEMBL license. There are lots of other sources of large sets of CAS RNs - NCI resolver, ChemSpider, PubChem, UNII). There are also many on public, non-copyrighted documents, patents, INN/USAN documents, etc. To say that i'm not allowed to do anything with them, is just bonkers.

There is a formal limit of 10K, if you sign (or your organisation, with relevant scope of the license).

I'm of mixed view myself as to whether it is worth doing something with ChEMBL - hence to poll - see what the community thinks. For some of the stuff I'm currently working on (clinical candidate disclosures) they are required, and I have never seen a statement to say I can't reuse them in any document I've come across). The whole idea is that they (CAS RNs) are useful to cross reference chemical (and biological) objects with systems that choose to use them.

Sorry for briefish reply, holiday, and just back from the beach with wet trunks!

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEM...