Skip to main content

New Drug Approvals 2014 - Pt. XI - Idelalisib (Zydelig™)




ATC Code: L01XX47
Wikipedia: Idelalisib
ChEMBL: CHEMBL2216870

On July 23rd the FDA approved Zydelig (idelalisib, GS-1101), as an orally-delivered drug to treat patients with three types of blood cancers.
Relapsed chronic lymphocytic leukemia (CLL)
Relapsed follicular B-cell, non-Hodgkin lymphoma  (FL)
Relapsed small lymphocytic lymphoma (SLL)

Blood cancer
The three main categories of blood cancer are leukemia, lymphoma and myeloma. Lymphoma is also split into two types: Hodgkin lymphoma and non-Hodgkin lymphoma. Both leukemia and myeloma occur in the bone marrow, whilst lymphoma is a cancer that is isolated to the lymphatic system. Acute leukemia is where there is an abundance of underdeveloped white blood cells that can’t function properly and chronic leukemia is where there are just far too many white blood cells, which is just as bad as having too few. Myeloma is where the plasma cells form tumours in the bone marrow.


Idelalisib
This drug is a phosphoinositide 3-kinase inhibitor, which works by blocking P110σ (CHEMBL3130, Uniprot:O00329), the delta isoform of the phosphoinositide 3-kinase enzyme, encoded in humans by the PIK3CD gene. This isoform plays a role in B-cell development, proliferation and function and is expressed predominantly in leukocytes.

Mode of action
Idelalisib works on patients by inhibiting the PI3 kinase delta isoform (PI3Kδ), which plays an important role in malignant lymphocyte survival. It is the delta and gamma forms that are specific to the hematopoietic system. This treatment impairs the normal tracking of CLL lymph nodes. It can be used in conjunction with Rituxan (rituximab), an existing blood cancer treatment, for relapsed CLL and on its own for FL and SLL.

Clinical trials
Clinical trials were carried out on 220 patients, with relapsed CLL, who were not healthy enough, due to co-existing medical conditions or damage from previous chemotherapy, to receive cytotoxic therapy. Patients were administered either idelalisib plus rituximab or a placebo and rituximab. Most of these patients were 65 years of age or older.
After 24 weeks, 93% of the group who had taken the combination treatment were disease progression-free, compared to only 46% of the group who had received the placebo and rituximab combination.
After 12 months, 90% of the dual drug combination group were alive, compared to 80% of the placebo-containing group. [NCI]

Indication and Warnings
This drug can be used in combination with rituximab or on its own, indicated for patients with relapsed conditions. There are several warnings for idelalisib, including hepatotoxicity, pneumonitis (fatal and serious), intestinal perforation and embyro-fetal toxicity. [FDA]

Trade Names
Idelalisib was developed by Gildead Sciences and is marketed under the name Zydelig.

Comments

Popular posts from this blog

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...