Skip to main content

New Drug Approvals 2014 - Pt. XI - Idelalisib (Zydelig™)




ATC Code: L01XX47
Wikipedia: Idelalisib
ChEMBL: CHEMBL2216870

On July 23rd the FDA approved Zydelig (idelalisib, GS-1101), as an orally-delivered drug to treat patients with three types of blood cancers.
Relapsed chronic lymphocytic leukemia (CLL)
Relapsed follicular B-cell, non-Hodgkin lymphoma  (FL)
Relapsed small lymphocytic lymphoma (SLL)

Blood cancer
The three main categories of blood cancer are leukemia, lymphoma and myeloma. Lymphoma is also split into two types: Hodgkin lymphoma and non-Hodgkin lymphoma. Both leukemia and myeloma occur in the bone marrow, whilst lymphoma is a cancer that is isolated to the lymphatic system. Acute leukemia is where there is an abundance of underdeveloped white blood cells that can’t function properly and chronic leukemia is where there are just far too many white blood cells, which is just as bad as having too few. Myeloma is where the plasma cells form tumours in the bone marrow.


Idelalisib
This drug is a phosphoinositide 3-kinase inhibitor, which works by blocking P110σ (CHEMBL3130, Uniprot:O00329), the delta isoform of the phosphoinositide 3-kinase enzyme, encoded in humans by the PIK3CD gene. This isoform plays a role in B-cell development, proliferation and function and is expressed predominantly in leukocytes.

Mode of action
Idelalisib works on patients by inhibiting the PI3 kinase delta isoform (PI3Kδ), which plays an important role in malignant lymphocyte survival. It is the delta and gamma forms that are specific to the hematopoietic system. This treatment impairs the normal tracking of CLL lymph nodes. It can be used in conjunction with Rituxan (rituximab), an existing blood cancer treatment, for relapsed CLL and on its own for FL and SLL.

Clinical trials
Clinical trials were carried out on 220 patients, with relapsed CLL, who were not healthy enough, due to co-existing medical conditions or damage from previous chemotherapy, to receive cytotoxic therapy. Patients were administered either idelalisib plus rituximab or a placebo and rituximab. Most of these patients were 65 years of age or older.
After 24 weeks, 93% of the group who had taken the combination treatment were disease progression-free, compared to only 46% of the group who had received the placebo and rituximab combination.
After 12 months, 90% of the dual drug combination group were alive, compared to 80% of the placebo-containing group. [NCI]

Indication and Warnings
This drug can be used in combination with rituximab or on its own, indicated for patients with relapsed conditions. There are several warnings for idelalisib, including hepatotoxicity, pneumonitis (fatal and serious), intestinal perforation and embyro-fetal toxicity. [FDA]

Trade Names
Idelalisib was developed by Gildead Sciences and is marketed under the name Zydelig.

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEM...