Skip to main content

Finding Compounds in Databases using UniChem




Have you ever identified an interesting compound and wondered what else is known about it?  For example is there any bioactivity data on it in ChEMBL or PubChem?  Is there any toxicity data on it (CompTox)?  Then having found interesting data on a compound wondered if it can be purchased or whether it has been patented.  All this can be done using UniChem.  Interested?  

Come along to our webinar on 29th March at 2pm BST (3pm CEST, 9am EDT)
You will however need to register by emailing chembl-help. Places are limited so please let us know as soon as possible if you register but are then unable to attend.

If you want to know more about UniChem please read on.

UniChem (https://www.ebi.ac.uk/unichem/  is a simple system we have developed to cross-reference compounds across databases both internal to EMBL-EBI and externally. Currently we have cross-references to 140 million compounds in 30 different databases. Information about the sources indexed in UniChem can be found here. UniChem is updated weekly with new compounds from these source databases.

So, for example, you can input a database identifier or an InChIKey into UniChem and see links to all the other indexed databases that have information about that compound.

If we take the drug paroxetine and search for it in UniChem, it is found in 22 databases and the UniChem webpage gives links to the paroxetine entries in those databases.

You don’t have to do this compound by compound using the web interface though.  UniChem has a comprehensive set of  web services that you can use to retrieve data or alternatively all the database files and source to source mapping files are available for download.

UniChem relies on the InChIKey to do the mapping between databases and this works fine if two databases have exactly the same structure for a compound.  We all know however that this isn’t always the case.  Sometimes a different salt or isotope was tested or a mistake was made in the stereocentre assignment meaning the InChIKeys no longer match.

However don’t despair.  UniChem connectivity searching can help. https://www.ebi.ac.uk/unichem/info/widesearchInfo  It turns out that because of the clever way that the InChI is built up with layers, this can be deconstructed and mapping can be done such that the relationship between compounds that differ by stereochemistry, isotopes, protonation state etc can all be identified and mapped. You can do this on single components or mixtures.

Taking our paroxetine example:

We have paroxetine and a number of related compounds in ChEMBL. For example:
Maybe someone wanted to genuinely test these related compounds or maybe they are errors (or a mixture of both).  Whatever the reason by using the UniChem connectivity searching feature we can identify any compounds that match paroxetine on the InChI connectivity layer.
The matches identified from a connectivity search starting with paroxetine can be found here:

At the webinar on 29th March we will describe how this is done in more detail and discuss some use cases.  If you are interested don’t forget to register.

If you want to read more here are links to two papers about UniChem:
Chambers, J., Davies, M., Gaulton, A., Hersey, A., Velankar, S., Petryszak, R., Hastings, J., Bellis, L., McGlinchey, S. and Overington, J.P. 
UniChem: A Unified Chemical Structure Cross-Referencing and Identifier Tracking System.
Journal of Cheminformatics2013, 5:3 (January 2013).


Chambers, J., Davies, M., Gaulton, A., Papadatos, G., Hersey and Overington, J.P.
UniChem: extension of InChI-based compound mapping to salt, connectivity and stereochemistry layers.
Journal of Cheminformatics2014, 6:43 (September 2014)

Comments

Popular posts from this blog

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

In search of the perfect assay description

Credit: Science biotech, CC BY-SA 4.0 Assays des cribe the experimental set-up when testing the activity of drug-like compounds against biological targets; they provide useful context for researchers interested in drug-target relationships. Ver sion 33 of ChEMBL contains 1.6 million diverse assays spanning ADMET, physicochemical, binding, functional and toxicity experiments. A set of well-defined and structured assay descriptions would be valuable for the drug discovery community, particularly for text mining and NLP projects. These would also support ChEMBL's ongoing efforts towards an  in vitro  assay classification. This Blog post will consider the features of the 'perfect' assay description and provide a guide for depositors on the submission of high quality data. ChEMBL's assays are typically structured with the overall aim, target, and method .  The ideal assay description is succinct but contains all the necessary information for easy interpretation by database u