Skip to main content

ChEMBL release 23, technical aspects.

ChEMBL release 23, technical aspects.


MV5BNDkwNzQ3Nzk4Nl5BMl5BanBnXkFtZTYwMjM0OTU5._V1_UX182_CR0,0,182,268_AL_.jpg

In this blog post, we would like to highlight some important technical improvements we've deployed as a part of the ChEMBL 23 release. You may find them useful if you work with ChEMBL data using FTP downloads and API.

1. FPS format support.


Many users download our SDF file containing all ChEMBL structures in order to compute fingerprints as an immediate next step. We decided to help them and publish precomputed fingerprints in a FPS text fingerprint format. The FPS format was developed by Andrew Dalke to "define and promote common file formats for storing and exchanging cheminformatics fingerprint data sets". It is used by chemfp, RDKit, OpenBabel and CACTVS and we believe it deserves promotion. The computed fingerprints are 2048 bit radius 2 morgan FPs, which we think is the most popular and generic type but please let us know in comments if other type can serve better. We are fully aware that fingerprint type can heavily depend on the specific application but it can be helpful for educational purposes and prototyping.

2. SQLite dump improvements.


As of release 21 we publish a SQLite dump which is an embedded file-based database. This proved to be very useful but as Andrew Dalke noticed on his blog, this dump wasn't optimised. We decided to follow Andrew's advice and pre-analyze tables during dump creation. We hope this will save you a few hours of computing. This is also a first ChEMBL release built with the support of our new Luigi-based pipelines. All the FTP files, including the schema image, SQL dumps and RDF data has been generated automatically using our python workflows. We are hoping to automate more and more parts of the release process, which should result in more frequent data releases and increased reproducibility in the long run.

3. API software updates


ChEMBL API is an open source project. This means that combining it with SQL dumps we provide, everyone can use it to create their own API instance. So far the biggest obstacle with integrating ChEMBL API software with other libraries was the fact, that the API was built on top of very old dependencies. For example, we were using Django 1.5, which was released about 5 years ago. We decided to upgrade the software making it compatible with the latest versions of most critical dependencies. After this change, the ChEMBL API software stack is now compatible with Django 1.11(.2) (which is the LTS edition), haystack 2.6.0, tastypie 0.13.3 and others. As a part of the upgrade process we also switched from virtualenv to conda as a default deployment environment which allowed us to easily install latest RDKit (2017.03.2 at the time of writing) and upgrade the Python interpreter itself (2.7.13). Using conda should make it easier to keep up with a future software updates as well, so from now on our software stack should always be using the latest stable dependencies.

All those changes should have a positive impact on the performance (more about that in the next paragraph), increase the security as well as compatibility with modern software stacks so it should be easier to integrate our software with your existing applications. Also, since all the dependencies are Python3-ready we are much closer to making a switch to Python 3.x. So far we migrated our API client library, which is compatible with both Python 2 and 3.

4. API performance improvements


The main reason to upgrade our software stack was improving the performance of our API. We decided to use Django Prefetch object (introduced in Django 1.7) to fine-tune SQL queries containing joins. We carefully analyzed all SQL queries generated by Django ORM when using the API. Introducing miniconda, which comes with precompiled binaries for python interpreter and libraries like numpy also had a positive impact on the performance, especially molecule images generation. We also added a full text search index on Assay description so now you can perform sophisticated full text queries. For example, searching for Activities, that have related assays with description containing 'TG-GATES', would look like this:


5. Extending Solr-based search


The above query can be rewritten to use Solr:


This query should be much faster than the one from the previous paragraph. We extended Solr indexes so now they cover 6 ChEMBL entities:


In total we have now indexed 17793020 solr documents. Some more example queries are:

A much more sophisticated query would be one that involves Solr-based search combined with DB-based filtering. For example, getting all assays that match 'inhibitor' in description and have assay type equal to 'A':


Such a "federated" query is quite heavy but we managed to optimise this use case. Still, please bear in mind that chaining search with too many filters may cause a timeout if the query is extremely complex.

6. Faster substructure search.


Our API provides the functionality to perform molecule substructure and similarity search. We noticed, that substructure search with the query being a small compound like benzene can lead to timeouts. We decided to enumerate all chemically important small structures and precache the results, which should improve substructure search performance. Please note, that this will have no impact on the speed of substructure search on our main web interface. This is because the interface is not using the API at the moment. We are developing a new API-based interface which should address this problem.

6. New API endpoints


Following new endpoints have been added to the API:

  • compound_record - records an occurrence of a molecule in a document
  • drug - provides information about approved drugs
  • organism - simple organism classification
  • target_prediction - target prediction results for clinical compounds, currently used on chembl user interface

7. Better API documentation


We updated the main API web page to reflect recent changes and we added a section with examples. GitHub repository has a new readme file as well and our PyPi packages point to the GitHub repo.

We also recently published a review paper, titled "Using ChEMBL web services for building applications and data processing workflows relevant to drug discovery". The document should be open and deposited into PubMedCentral (https://www.ncbi.nlm.nih.gov/pubmed/28602100) after six months.

8. Training


Please don't forget that we are organising a webinar on the 12th July about the API. More details will be announced soon.

9. Future plans


Our immediate future plans regarding the API are:
  • providing a Swagger-based documentation that can be used to generate a client code in any language
  • developing a better KNIME node
  • publishing a collection of reusable web components that consume the API





Comments

Popular posts from this blog

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...