Skip to main content

Withdrawn Drugs


These is much ongoing work within the drug discovery and toxicology communities to better understand the safety aspects of approved drugs and clinical candidate compounds, and for this reason there is clear interest in why some drugs have been approved but then subsequently withdrawn from the market. This post describes the information for withdrawn drugs that is currently available in ChEMBL. 

Within ChEMBL (release 24) there are 192 drugs that have been annotated as approved but then subsequently withdrawn from the market for one or more reasons.  For each of these drugs, the year of withdrawal, region of withdrawal and reason for withdrawal (‘withdrawn_reason’) have been available since release 22 of ChEMBL (see ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_22/archived/chembl_22_release_notes.txt), while the classification of the reason for withdrawal (‘withdrawn_class’)  is a new feature for ChEMBL (release 24).  The withdrawn information is available for relevant drugs on the Compound Report Card of the web interface, or within the molecule_dictionary sql table. 

For example Rosiglitazone, an anti-diabetes medicine, was withdrawn from the EU in 2011 due to the increased risk of ischaemic heart disease (http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2010/09/news_detail_001119.jsp ). Note that Rosiglitazone has been withdrawn from the EU market, but is still available within other regions of the world and hence the Compound Report Card shows that the drug is ‘approved’ (see information within the top of the Compound Report Card - https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL121), while the detail about the region of withdrawal shows that it has been withdrawn from the EU (further down the Compound Report Card). ‘Cardiotoxicity’ is annotated as the withdrawn_class for Rosiglitazone.



Using the withdrawn classification (‘withdrawn_class’), similar withdrawn drugs can be grouped together. For example, if you are interested in approved drugs that have been withdrawn for ‘hepatoxicity’, ‘cardiotoxicity’, ‘neurotoxicity’ etc then you can now easily group drugs withdrawn for similar reasons. Therefore the pie chart displayed below shows 45 drugs that have been withdrawn for hepatotoxicity reasons. 

Of the annotated classes of withdrawn drugs, 37 drugs have more than one reason for withdrawal from the markets (and therefore are assigned more than one class of withdrawn reason on the pie chart); 9 of the withdrawn drugs have not been assigned a withdrawn_class because they have a non-specific reason (e.g. 'Multi-Organ Toxicities') that cannot be given a withdrawn_class without further investigation of the underlying literature; and 44 of the withdrawn drugs do not currently have a reason described in ChEMBL. 

Further work is planned to annotate additional withdrawn drug information. 


This work has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 116030. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA.



Comments

Popular posts from this blog

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...