Skip to main content

ChEMBL 25 and new web interface released

We are pleased to announce the release of ChEMBL 25 and our new web interface. This version of the database, prepared on 10/12/2018 contains:

  • 2,335,417 compound records
  • 1,879,206 compounds (of which 1,870,461 have mol files)
  • 15,504,603 activities
  • 1,125,387 assays
  • 12,482 targets
  • 72,271 documents


Data can be downloaded from the ChEMBL ftp site: ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_25

Please see ChEMBL_25 release notes for full details of all changes in this release: ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_25/chembl_25_release_notes.txt


DATA CHANGES SINCE THE LAST RELEASE

# Deposited Data Sets:

Kuster Lab Chemical Proteomics Drug Profiling (src_id = 48, Document ChEMBL_ID = CHEMBL3991601):
Data have been included from the publication: The target landscape of clinical kinase drugs. Klaeger S, Heinzlmeir S and Wilhelm M et al (2017), Science, 358-6367 (https://doi.org/10.1126/science.aan4368)

# In Vivo Assay Classification:

A classification scheme has been created for in vivo assays. This is stored in the ASSAY_CLASSIFICATION table in the database schema and consists of a three-level classification. Level 1 corresponds to the top-levels of the ATC classification i.e., anatomical system/therapeutic area (e.g., CARDIOVASCULAR SYSTEM, MUSCULO-SKELETAL SYSTEM, NERVOUS SYSTEM). Level 2 provides a more fine-grained classification of the phenotype or biological process being studied (e.g., Learning and Memory, Anti-Obesity Activity, Gastric Function). Level three represents the specific in vivo assay being performed (e.g., Laser Induced Thrombosis, Hypoxia Tolerance Test in Rats, Paw Edema Test) and is assigned a specific ASSAY_CLASS_ID. Individual in vivo assays in the ChEMBL ASSAYS table are mapped to reference in-vivo assays in the ASSAY_CLASSIFICATION table via the ASSAY_CLASS_MAP table. More information about the classification scheme is available in the following publication: https://doi.org/10.1038/sdata.2018.230. The assay classification is available via web services and will be included in the ChEMBL web interface in the near future.

# Updated Data Sets:
Scientific Literature
Patent Bioactivity Data
BindingDB Database (corrections to compound structures)


WEB INTERFACE/WEB SERVICE CHANGES SINCE THE LAST RELEASE

# Web Interface:

The new ChEMBL web interface is now live at https://www.ebi.ac.uk/chembl (this replaces the previous beta version). The old ChEMBL web interface will be retired before the ChEMBL_26 release, but is available on the following URL until then: https://www.ebi.ac.uk/chembl/old. The new interface provides richer search and filtering capabilities. Documentation regarding this new functionality and frequently asked questions are available on our help pages: https://chembl.gitbook.io/chembl-interface-documentation/

# Changes to Web Services:

The Assay web service has been updated to include both assay_parameters and the in vivo assay classification for an assay (where applicable):
https://www.ebi.ac.uk/chembl/api/data/assay

A separate endpoint has also been created for the in vivo assay classification:
https://www.ebi.ac.uk/chembl/api/data/assay_class

The Activity web service has been updated to include activity_properties. The 'published_type', 'published_relation', 'published_value' and 'published_units' fields have also been renamed to 'type', 'relation', 'value' and 'units':
https://www.ebi.ac.uk/chembl/api/data/activity

A new endpoint has been created to retrieve supplementary data associated with an activity measurement (or list of measurements):
https://www.ebi.ac.uk/chembl/api/data/activity_supplementary_data_by_activity


SCHEMA CHANGES SINCE THE LAST RELEASE

# Tables Added:

ASSAY_CLASSIFICATION:
Classification scheme for phenotypic assays e.g., by therapeutic area, phenotype/process and assay type. Can be used to find standard assays for a particular disease area or phenotype e.g., anti-obesity assays. Currently data are available only for in vivo efficacy assays

COLUMN_NAME DATA_TYPE COMMENT
ASSAY_CLASS_ID NUMBER(9,0) Primary key
L1 VARCHAR2(100) High level classification e.g., by anatomical/therapeutic area
L2 VARCHAR2(100) Mid-level classification e.g., by phenotype/biological process
L3 VARCHAR2(1000) Fine-grained classification e.g., by assay type
CLASS_TYPE VARCHAR2(50) The type of assay being classified e.g., in vivo efficacy
SOURCE VARCHAR2(50) Source from which the assay class was obtained

ASSAY_CLASS_MAP:
Mapping table linking assays to classes in the ASSAY_CLASSIFICATION table

COLUMN_NAME DATA_TYPE COMMENT
ASS_CLS_MAP_ID NUMBER Primary key.
ASSAY_ID NUMBER assay_id is the foreign key that maps to the 'assays' table
ASSAY_CLASS_ID NUMBER assay_class_id is the foreign key that maps to the 'assay_classification' table


# Columns Removed:

ACTIVITIES:
PUBLISHED_TYPE (DEPRECATED in ChEMBL_24, now removed, replaced by TYPE)
PUBLISHED_RELATION (DEPRECATED in ChEMBL_24, now removed, replaced by RELATION)
PUBLISHED_VALUE (DEPRECATED in ChEMBL_24, now removed, replaced by VALUE)
PUBLISHED_UNITS (DEPRECATED in ChEMBL_24, now removed, replaced by UNITS)


Funding Acknowledgements:
Work contributing to ChEMBL_25 was funded by the Wellcome Trust, EMBL Member States, Open Targets, National Institutes of Health (NIH) Common Fund, EU Innovative Medicines Initiative (IMI) and EU Framework 7 programmes. Please see https://www.ebi.ac.uk/chembl/funding for more details.

The ChEMBL Team

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEM...