Skip to main content

Mechanism of Action and Drug Indication data on the interface.

Two new 'Browse' pages have been added to the interface; Browse Drug Mechanisms and Browse Drug Indications. Users can now access these 2 pages directly to explore all the data. Or alternatively, they can land on these pages from drugs, compounds and targets in ChEMBL.

Accessing all the data from the main page


The 'circles' visualisation on the main page shows a summary of the entities in ChEMBL. Circles for Drug Mechanisms of Action and Drug Indications have been added. By clicking on the circles, you will be taken to a page that allows you to explore the corresponding entity. 
Visualisation that summarises the entities in ChEMBL, Drug Mechanisms of Action and Drug Indications are now included.

The Browse Drug Mechanisms and Browse Drug Indications pages allow you to use filters, link to other entities, and download the data in the same way as the other 'Browse' pages.

All Drug Mechanism data.
All Drug Indication data.

Accessing Drug Indication and Drug Mechanism data related to other entities


You can now explore the Drug Indication and Drug Mechanism data in relation to the following entities:

From Browse Drug Mechanisms you can:
  • Browse related Drugs
  • Browse related Compounds
  • Browse related Targets

From Browse Drug Indications you can:
  • Browse related Drugs
  • Browse related Compounds

From Browse Drugs you can:
  • Browse related Drug Mechanisms
  • Browse related Drug Indications
  • Browse related Activities

Example A:


1. Go to the Browse Drug Mechanisms page. Find all drugs with mechanisms as neurokinin receptor antagonists.
Note that the data describes the mechanisms of action of 17 compounds for 3 targets.



2. Select all items and click on 'Browse Drugs', a new tab will open showing the drugs for the targets selected in step 1.



3. Click on 'Browse Drug Indications' to view all annotated indications for the drugs in step 2.




Example B:


1. Go to the Browse Drug Indications page. Find all drugs whose indication is asthma. There are 175 entries with asthma as an indication.



2. Select all items and click on 'Browse Drugs', a new tab will open showing the drugs for the indications selected in step 1.




3. Click on 'Browse Drug Mechanisms' to view of all annotated mechanisms for the drugs in step 2.



Accessing Drug Indication and Drug Mechanism data from report cards

You can now go to a dedicated page from the Drug Mechanism and Drug Indication data in the report cards. For example go to the report card for IMATINIB (CHEMBL941)

https://www.ebi.ac.uk/chembl/compound_report_card/CHEMBL941/

In the Drug Mechanism section you can see the data for that compound. If you click on 'Browse All', you will be directed to the Browse Drug Mechanisms page showing the data.

Drug Mechanisms section for the report card of IMATINIB (CHEMBL941)

Similarly, in the Drug Indications section you can click on 'Browse All' to be directed to a 'Browse Drug Indications' page showing all the data.
Drug Indications section for the report card of IMATINIB (CHEMBL941)


If you have any questions, please contact the ChEMBL Team support (chembl-help [at] ebi.ac.uk)




Comments

Popular posts from this blog

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

ChEMBL 26 Released

We are pleased to announce the release of ChEMBL_26 This version of the database, prepared on 10/01/2020 contains: 2,425,876 compound records 1,950,765 compounds (of which 1,940,733 have mol files) 15,996,368 activities 1,221,311 assays 13,377 targets 76,076 documents You can query the ChEMBL 26 data online via the ChEMBL Interface and you can also download the data from the ChEMBL FTP site . Please see ChEMBL_26 release notes for full details of all changes in this release. Changes since the last release: * Deposited Data Sets: CO-ADD antimicrobial screening data: Two new data sets have been included from the Community for Open Access Drug Discovery (CO-ADD). These data sets are screening of the NIH NCI Natural Product Set III in the CO-ADD assays (src_id = 40, Document ChEMBL_ID = CHEMBL4296183, DOI = 10.6019/CHEMBL4296183) and screening of the NIH NCI Diversity Set V in the CO-ADD assays (src_id = 40, Document ChEMBL_ID = CHEMBL4296182, DOI = 10.601