Skip to main content

Molecule hierarchy




During drug development, active pharmaceutical ingredients are often formulated as salts to provide the final pharmaceutical product. ChEMBL includes parent molecules and their salts (approved and investigational) as well as other alternative forms such as hydrates and radioisotopes. These alternative forms are linked to their parent compound through the molecule hierarchy.
 

Using the molecule hierarchy

The molecule hierarchy can be used to retrieve and display connected compounds and to aggregate activity data that has been mapped to any member of a compound family. On the interface, related compounds are automatically displayed in the ‘Alternative forms’ section of the ChEMBL compound report card. Bioactivity data can easily be aggregated in the activity summary by using the 'Include/Exclude Alternative Forms' filter.



Finding the molecule hierarchy

 

On the interface, we include alternative forms as shown above. The downloaded database contains the molecule_hierarchy table and the equivalent API endpoint is the ‘molecule_form’ (https://www.ebi.ac.uk/chembl/api/data/molecule_form).


Example: using the molecule hierarchy to retrieve drug mechanisms

 

One of the most common questions we’re asked is ‘how to obtain drug mechanisms mapped to any member of a compound family’ and so we've provided a couple of examples below.


From the ChEMBL interface

 

The ‘Drugs’ and ‘Mechanism’ views contain only parent molecules and so mechanisms are automatically mapped to the parent form. However, a general search through the ‘Compounds’ view provides mechanisms mapped to parents and all approved salts which can be found on their respective compound report cards.



From the database with SQL

 

In the downloaded database, the drug mechanism may be mapped to a single member of the compound family in the drug_mechanism table, typically the approved form. For example, the mechanism for atorvastatin is mapped to the calcium salt. However, the molecule hierarchy can be used to link the compound family so that a search using the parent (atorvastatin, CHEMBL1487) returns the mechanism mapped to the approved salt (atorvastatin calcium):

 

select *

from drug_mechanism

where molregno in

    (select molregno

    from molecule_hierarchy

    where (

        parent_molregno in

        (select distinct molregno from molecule_dictionary where chembl_id = 'CHEMBL1487') 

        or molregno in

        (select distinct molregno from molecule_dictionary where chembl_id = 'CHEMBL1487')

               )

     );


Questions? 


Please get in touch on the Helpdesk or have a look through our training materials, recent webinar and FAQs.


Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d