Skip to main content

Identifying relevant compounds in patents

 


As you may know, patents can be inherently noisy documents which can make it challenging to extract drug discovery information from them, such as the key targets or compounds being claimed. There are many reasons for this, ranging from deliberate obfuscation through to the long and detailed nature of the documents. For example, a typical small molecule patent may contain extensive background information relating to the target biology and disease area, chemical synthesis information, biological assay protocols and pharmacological measurements (which may refer to endogenous substances, existing therapies, reaction intermediates, reagents and reference compounds), in addition to description of the claimed compounds themselves. 

The SureChEMBL system extracts this chemical information from patent documents through recognition of chemical names, conversion of images and extraction of attached files, and allows patents to be searched for chemical structures of interest. However, the current SureChEMBL data extraction pipeline cannot distinguish between the different types of chemicals described in a patent document - it simply extracts all identified molecules. Some simple metrics can be used to filter out the worst offenders. For example, the corpus frequency can be used to remove molecules that are seen thousands of times over many patents (not novel) and chemical descriptors can be used to filter molecules that are particularly small (e.g., fragments, ions, solvents) or don't have drug-like properties. However, there is still much room for improvement and a need for additional methods to more accurately identify claimed compounds.

This paper on the 'Identification of the Core Chemical Structure in SureChEMBL Patents' has recently been published by Maria Falaguera and Jordi Mestres, and the resulting data set is available to download from the SureChEMBL FTP site: https://ftp.ebi.ac.uk/pub/databases/chembl/SureChEMBLccs. The paper describes a filtering protocol to automatically select the core chemical structures best describing the pharmacologically relevant molecules in a patent. The method is based on identifying maximum common substructures (MCSs) for all compounds in a patent, using RDKit. These are filtered to remove those that are particularly promiscuous, then candidate MCSs are chosen according to coverage, homogeneity and inclusion criteria, to identify those that are most likely to represent the core chemical structure of the patent claim. These candidate MCSs are then used to retain only molecules from the patent that contain at least one such substructure (or those with high similarity to a molecule that does). 

The method has been validated against a set of patents containing pharmacology data that have been manually extracted for inclusion in ChEMBL. Since the compounds included in ChEMBL all have reported activity measurements in the patents, it is reasonable to assume these are highly relevant molecules. The filtering method was able to recover 92.5% of these molecules from the corresponding patents (see the paper for lots more detail on this). Finally, the method was then run on the set of 240K US patents with medical classification codes (A61K*, excluding dental, cosmetic, antibodies etc), resulting in a set of 5.9m molecules that form closely related chemical series (65.3% of the total molecules). As mentioned above, this data set can be downloaded from SureChEMBL.

We'd be keen to hear from anyone who finds this data useful; we are actively exploring a number of different ways to improve the SureChEMBL system including the accuracy of its annotations. 

Comments

Popular posts from this blog

Sequence similarity searches in ChEMBL

  The ChEMBL database contains bioactivity data that links compounds to their biological targets.  Most ChEMBL targets are proteins (~ 70% in version 27) and these are mapped to their UniProt accessions.   On the ChEMBL interface, searches can be performed with either protein names or accessions...but did you know that protein similarity searches are also possible? Here’s an example using human Phospholipase DDHD2 , a target not found in ChEMBL.       1.       On the ChEMBL interface , click 'Enter a Sequence:     2.       Input the FASTA sequence corresponding to human  Phospholipase DDHD2  and click 'Search in ChEMBL':  3.      Review the BLAST results, select targets of interest and browse bioactivity data: The BLAST  search identifies the mouse  Phospholipase DDHD2   homologue alongside a small number of bioactivity data points and active compounds . ChEMBL's sequence search feature is currently only available through the interface. However, sequence data for prote

ChEMBL 29 Released

  We are pleased to announce the release of ChEMBL 29. This version of the database, prepared on 01/07/2021 contains: 2,703,543 compound records 2,105,464 compounds (of which 2,084,724 have mol files) 18,635,916 activities 1,383,553 assays 14,554 targets 81,544 documents Data can be downloaded from the ChEMBL FTP site:   https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29 .  Please see ChEMBL_29 release notes for full details of all changes in this release: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29/chembl_29_release_notes.txt New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document IDs CHEMBL4649982-CHEMBL4649998): The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesiz

Julia meets RDKit

Julia is a young programming language that is getting some traction in the scientific community. It is a dynamically typed, memory safe and high performance JIT compiled language that was designed to replace languages such as Matlab, R and Python. We've been keeping an an eye on it for a while but we were missing something... yes, RDKit! Fortunately, Greg very recently added the MinimalLib CFFI interface to the RDKit repertoire. This is nothing else than a C API that makes it very easy to call RDKit from almost any programming language. More information about the MinimalLib is available directly from the source . The existence of this MinimalLib CFFI interface meant that we no longer had an excuse to not give it a go! First, we added a BinaryBuilder recipe for building RDKit's MinimalLib into Julia's Yggdrasil repository (thanks Mosè for reviewing!). The recipe builds and automatically uploads the library to Julia's general package registry. The build currently targe

ChEMBL 28 Released!

  We are pleased to announce the release of ChEMBL_28. This version of the database, prepared on 15/01/2021 contains: * 2,680,904 compound records * 2,086,898 compounds (of which 2,066,376 have mol files) * 17,276,334 activities * 1,358,549 assays * 14,347 targets * 80,480 documents Data can be downloaded from the ChEMBL FTP site:   https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_28 . Please see ChEMBL_26 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_28/chembl_28_release_notes.txt DATA CHANGES SINCE THE LAST RELEASE This release includes several new deposited data sets: Donated Chemical Probes data from SGC Frankfurt (src_id = 54) SARS-CoV-2 screening data from the Fraunhofer Institute (src_id = 52) Antimicrobial screening data sets from CO-ADD (src_id = 40) Plasmodium screening data from the UCSD Winzeler lab (src_id = 51) MMV pathogen box screening data (src_id = 34) Curated data