Skip to main content

New Drug Warnings Browser

As mentioned in the announcement post of ChEMBL 29, a new Drug Warnings Browser has been created. This is an updated version of the entity browsers in ChEMBL (Compounds, Targets, Activities, etc). It contains new features that will be tried out with the Drug Warnings and will be applied to the other entities gradually. The new features of the Drug Warnings Browser are described below.

More visible buttons to link to other entities

This functionality is already available in the old entity browsers, but the button to use it is not easily recognised.

In the new version, the buttons are more visible.



By using those buttons, users can see the related activities, compounds, drugs, mechanisms of action and drug indications to the drug warnings selected. The page will take users to the corresponding entity browser with the items related to the ones selected, or to all the items in the dataset if the user didn’t select any.





Additionally, the process of creating the join query is now handled completely by the backend, this will make it faster and will allow it to handle more items in the future. 

Improved visualization of the download process

When the user triggers a download, the visualization of the process of creating the final file has been improved.


Improved filtering capabilities

Many filtering capabilities have been improved with the Drug Warnings Browser. The histogram filters  will now always show a bar for ‘null’ values, so the user can always know how many items in the dataset have a null value for the property being shown. 


For the text-based properties, users can now search and filter for specific values in the dataset. In the following example, the user can search for terms that start with ‘Cardio’ in the values of the property Warning Class in the dataset:


The matching term can be used to filter out the data.


By clicking on the 3 dots button on the histograms, users can change the presentation of the histogram.




The filters for the number-based properties now allow users to filter by a range. The absolute minimum and maximum values are calculated automatically from the values found in the dataset for that current property.


Custom Filtering

Users can now apply custom filters to the dataset, apart from the ones provided by default. Users can filter the data in more complex ways than the default provided by the predefined filters. To use them, click on the ‘Custom Filtering’ button. 



Clicking on the button will open a panel that indicates whether custom filters are being applied. To edit the custom filters, click on the 'Edit Button’.


The menu that opens has 2 main sections. The section to the left shows the custom filter being applied and allows to edit it. The section to the right provides a query builder that helps users to build queries for the dataset. The custom queries are query strings of Elasticsearch, here you can find more information about the query strings.



To help users understand the structure of the data, there is a dialog that shows the available properties in the dataset.




Also some examples are available for users to apply and see how the custom filters can be created. 





The query builder section helps users to create custom filters by using a graphical interface. If auto-paste is activated, the query will be pasted to the editor at the same time as it is created. 



When a custom filter is being applied, an icon will indicate it when the menu is closed.



Future Plans

The Drug Warnings Browser was created to improve these 'entity browser of pages in ChEMBL. The plan is to replace the other entity browsers with the new version gradually. If you have some feedback or want to report a bug, please contact us: chembl-help@ebi.ac.uk (See also this page for more information)





Comments

Popular posts from this blog

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

ChEMBL 29 Released

  We are pleased to announce the release of ChEMBL 29. This version of the database, prepared on 01/07/2021 contains: 2,703,543 compound records 2,105,464 compounds (of which 2,084,724 have mol files) 18,635,916 activities 1,383,553 assays 14,554 targets 81,544 documents Data can be downloaded from the ChEMBL FTP site:   https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29 .  Please see ChEMBL_29 release notes for full details of all changes in this release: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29/chembl_29_release_notes.txt New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document IDs CHEMBL4649982-CHEMBL4649998): The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesiz

Julia meets RDKit

Julia is a young programming language that is getting some traction in the scientific community. It is a dynamically typed, memory safe and high performance JIT compiled language that was designed to replace languages such as Matlab, R and Python. We've been keeping an an eye on it for a while but we were missing something... yes, RDKit! Fortunately, Greg very recently added the MinimalLib CFFI interface to the RDKit repertoire. This is nothing else than a C API that makes it very easy to call RDKit from almost any programming language. More information about the MinimalLib is available directly from the source . The existence of this MinimalLib CFFI interface meant that we no longer had an excuse to not give it a go! First, we added a BinaryBuilder recipe for building RDKit's MinimalLib into Julia's Yggdrasil repository (thanks Mosè for reviewing!). The recipe builds and automatically uploads the library to Julia's general package registry. The build currently targe

Identifying relevant compounds in patents

  As you may know, patents can be inherently noisy documents which can make it challenging to extract drug discovery information from them, such as the key targets or compounds being claimed. There are many reasons for this, ranging from deliberate obfuscation through to the long and detailed nature of the documents. For example, a typical small molecule patent may contain extensive background information relating to the target biology and disease area, chemical synthesis information, biological assay protocols and pharmacological measurements (which may refer to endogenous substances, existing therapies, reaction intermediates, reagents and reference compounds), in addition to description of the claimed compounds themselves.  The SureChEMBL system extracts this chemical information from patent documents through recognition of chemical names, conversion of images and extraction of attached files, and allows patents to be searched for chemical structures of interest. However, the curren