Skip to main content

New Drug Warnings Browser

As mentioned in the announcement post of ChEMBL 29, a new Drug Warnings Browser has been created. This is an updated version of the entity browsers in ChEMBL (Compounds, Targets, Activities, etc). It contains new features that will be tried out with the Drug Warnings and will be applied to the other entities gradually. The new features of the Drug Warnings Browser are described below.

More visible buttons to link to other entities

This functionality is already available in the old entity browsers, but the button to use it is not easily recognised.

In the new version, the buttons are more visible.



By using those buttons, users can see the related activities, compounds, drugs, mechanisms of action and drug indications to the drug warnings selected. The page will take users to the corresponding entity browser with the items related to the ones selected, or to all the items in the dataset if the user didn’t select any.





Additionally, the process of creating the join query is now handled completely by the backend, this will make it faster and will allow it to handle more items in the future. 

Improved visualization of the download process

When the user triggers a download, the visualization of the process of creating the final file has been improved.


Improved filtering capabilities

Many filtering capabilities have been improved with the Drug Warnings Browser. The histogram filters  will now always show a bar for ‘null’ values, so the user can always know how many items in the dataset have a null value for the property being shown. 


For the text-based properties, users can now search and filter for specific values in the dataset. In the following example, the user can search for terms that start with ‘Cardio’ in the values of the property Warning Class in the dataset:


The matching term can be used to filter out the data.


By clicking on the 3 dots button on the histograms, users can change the presentation of the histogram.




The filters for the number-based properties now allow users to filter by a range. The absolute minimum and maximum values are calculated automatically from the values found in the dataset for that current property.


Custom Filtering

Users can now apply custom filters to the dataset, apart from the ones provided by default. Users can filter the data in more complex ways than the default provided by the predefined filters. To use them, click on the ‘Custom Filtering’ button. 



Clicking on the button will open a panel that indicates whether custom filters are being applied. To edit the custom filters, click on the 'Edit Button’.


The menu that opens has 2 main sections. The section to the left shows the custom filter being applied and allows to edit it. The section to the right provides a query builder that helps users to build queries for the dataset. The custom queries are query strings of Elasticsearch, here you can find more information about the query strings.



To help users understand the structure of the data, there is a dialog that shows the available properties in the dataset.




Also some examples are available for users to apply and see how the custom filters can be created. 





The query builder section helps users to create custom filters by using a graphical interface. If auto-paste is activated, the query will be pasted to the editor at the same time as it is created. 



When a custom filter is being applied, an icon will indicate it when the menu is closed.



Future Plans

The Drug Warnings Browser was created to improve these 'entity browser of pages in ChEMBL. The plan is to replace the other entity browsers with the new version gradually. If you have some feedback or want to report a bug, please contact us: chembl-help@ebi.ac.uk (See also this page for more information)





Comments

Popular posts from this blog

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

Using ChEMBL web services via proxy.

It is common practice for organizations and companies to make use of proxy servers to connect to services outside their network. This can cause problems for users of the ChEMBL web services who sit behind a proxy server. So to help those users who have asked, we provide the following quick guide, which demonstrates how to access ChEMBL web services via a proxy. Most software libraries respect proxy settings from environmental variables. You can set the proxy variable once, normally HTTP_PROXY and then use that variable to set other related proxy environment variables: Or if you have different proxies responsible for different protocols: On Windows, this would be: If you are accessing the ChEMBL web services programmatically and you prefer not to clutter your environment, you can consider adding the proxy settings to your scripts. Here are some python based recipes: 1. Official ChEMBL client library If you are working in a python based environment, we recommend

ChEMBL 29 Released

  We are pleased to announce the release of ChEMBL 29. This version of the database, prepared on 01/07/2021 contains: 2,703,543 compound records 2,105,464 compounds (of which 2,084,724 have mol files) 18,635,916 activities 1,383,553 assays 14,554 targets 81,544 documents Data can be downloaded from the ChEMBL FTP site:   https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29 .  Please see ChEMBL_29 release notes for full details of all changes in this release: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29/chembl_29_release_notes.txt New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document IDs CHEMBL4649982-CHEMBL4649998): The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesiz

LSH-based similarity search in MongoDB is faster than postgres cartridge.

TL;DR: In his excellent blog post , Matt Swain described the implementation of compound similarity searches in MongoDB . Unfortunately, Matt's approach had suboptimal ( polynomial ) time complexity with respect to decreasing similarity thresholds, which renders unsuitable for production environments. In this article, we improve on the method by enhancing it with Locality Sensitive Hashing algorithm, which significantly reduces query time and outperforms RDKit PostgreSQL cartridge . myChEMBL 21 - NoSQL edition    Given that NoSQL technologies applied to computational chemistry and cheminformatics are gaining traction and popularity, we decided to include a taster in future myChEMBL releases. Two especially appealing technologies are Neo4j and MongoDB . The former is a graph database and the latter is a BSON document storage. We would like to provide IPython notebook -based tutorials explaining how to use this software to deal with common cheminformatics p

Using autoencoders for molecule generation

Some time ago we found the following paper https://arxiv.org/abs/1610.02415 so we decided to take a look at it and train the described model using ChEMBL. Lucky us, we also found two open source implementations of the model; the original authors one https://github.com/HIPS/molecule-autoencoder and https://github.com/maxhodak/keras-molecules . We decided to rely on the last one as the original author states that it might be easier to have greater success using it. What is the paper about? It describes how molecules can be generated and specifically designed using autoencoders. First of all we are going to give some simple and not very technical introduction for those that are not familiar with autoencoders and then go through a ipython notebook showing few examples of how to use it. Autoencoder introduction Autoencoders are one of the many different and popular unsupervised deep learning algorithms used nowadays for many different fields and purposes. These work wi