Skip to main content

Magic methyls and magic carpets


A few days ago, there was this post by Derek Lowe, reviewing a recent paper on magic methyls and their occurrence and impact in medicinal chemistry practice. They're called 'magic' because, although methyls are relatively insignificant in terms of size, polarity or lipophilicity, the addition of one in a compound can sometimes have a dramatic impact in its potency - much more that it would be attributed to any simple desolvation effects.

More generally, the 'magic methyl' phenomenon pops up in discussions about the validity of the molecular similarity principle, descriptors, QSAR - almost everything in the applied Chemoinformatics field - and belongs to the general class of 'activity cliffs'. 

Methylation is a chemical transformation, and transformations along with their impact on a property of choice can be easily mined and studied using the so-called Matched Molecular Pairs analysis (MMPA). We already have a comprehensive database of all the matched pairs and transformations in ChEMBL, so it was relatively straightforward to extract all the methylations (H>>CH3) recorded in ChEMBL_17 and analyse their impact in binding affinity. (b.t.w., MMPs are coming to the ChEMBL interface soon, so look out for this feature if you are interested in this area).

So, in more detail, I extracted all the H>>CH3 pairs and joined them with their pActivities (Ki, IC50, EC50) against human proteins as reported in the literature (our data validity flags were quite useful in this case). The trick here is to only consider molecule pairs tested against the same assay, so that their respective activities are directly comparable and one can safely subtract one from the other.

I ended up with 37,771 data points - much more than another recent publication that looked at this. Here's how the histogram of Delta pActivity (log units) looks like:

As you can see, the scale tilts slightly to the left of zero, meaning that methylation has overall neutral to negative effect on binding affinity. This is not the first time people see this. There are indeed, however, several examples (~2.3K out of 37.8K, to be exact) of magic methyls with more than 10-fold increase in activity. More about this later.

Some of you will ask: 'OK, but what about the context? - methylation of a carbon, nitrogen or oxygen is not the same'. You're right, it's not. So I trellised the above plot by a perception of context - i.e. whether the methylation happens next to an aromatic/aliphatic C or N or next to an oxygen:
The same trend, more or less, is observed with the exception of the aromatic carbon context, whereby methylation seems to have more favourable effect that expected by the overall distribution. Perhaps that could be explained by introducing torsional and planarity changes, etc. For a more thorough explanation of this, see here

Here are some examples of 'magic methyls' in the literature:

The take home message is: Magic methyls, unlike magic carpets, do exist but there are also equally as many, or even more, 'nasty' methyls. However, both of them are just a rather small minority compared to the 'boring' methyls - i.e. methyls with minimal or zero impact on potency.

It's just human nature to remember the few exceptions and outliers and forget the vast evidence to the contrary. However, isolating and understanding such edge cases and black swans is what could make the difference in drug discovery. 

George

Comments

Noel O'Boyle said…
So are "magic methyls" just another way of saying, "there is a part on the RHS of the normal curve which is a long way from the mean"? That is, is it a zero information content phrase.
kott said…
"there is a part on the RHS of the normal curve which is a long way from the mean" - I don't think this is a catchy title...

Popular posts from this blog

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

ChEMBL 29 Released

  We are pleased to announce the release of ChEMBL 29. This version of the database, prepared on 01/07/2021 contains: 2,703,543 compound records 2,105,464 compounds (of which 2,084,724 have mol files) 18,635,916 activities 1,383,553 assays 14,554 targets 81,544 documents Data can be downloaded from the ChEMBL FTP site:   https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29 .  Please see ChEMBL_29 release notes for full details of all changes in this release: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29/chembl_29_release_notes.txt New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document IDs CHEMBL4649982-CHEMBL4649998): The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesiz

Identifying relevant compounds in patents

  As you may know, patents can be inherently noisy documents which can make it challenging to extract drug discovery information from them, such as the key targets or compounds being claimed. There are many reasons for this, ranging from deliberate obfuscation through to the long and detailed nature of the documents. For example, a typical small molecule patent may contain extensive background information relating to the target biology and disease area, chemical synthesis information, biological assay protocols and pharmacological measurements (which may refer to endogenous substances, existing therapies, reaction intermediates, reagents and reference compounds), in addition to description of the claimed compounds themselves.  The SureChEMBL system extracts this chemical information from patent documents through recognition of chemical names, conversion of images and extraction of attached files, and allows patents to be searched for chemical structures of interest. However, the curren

Julia meets RDKit

Julia is a young programming language that is getting some traction in the scientific community. It is a dynamically typed, memory safe and high performance JIT compiled language that was designed to replace languages such as Matlab, R and Python. We've been keeping an an eye on it for a while but we were missing something... yes, RDKit! Fortunately, Greg very recently added the MinimalLib CFFI interface to the RDKit repertoire. This is nothing else than a C API that makes it very easy to call RDKit from almost any programming language. More information about the MinimalLib is available directly from the source . The existence of this MinimalLib CFFI interface meant that we no longer had an excuse to not give it a go! First, we added a BinaryBuilder recipe for building RDKit's MinimalLib into Julia's Yggdrasil repository (thanks Mosè for reviewing!). The recipe builds and automatically uploads the library to Julia's general package registry. The build currently targe

New Drug Warnings Browser

As mentioned in the announcement post of  ChEMBL 29 , a new Drug Warnings Browser has been created. This is an updated version of the entity browsers in ChEMBL ( Compounds , Targets , Activities , etc). It contains new features that will be tried out with the Drug Warnings and will be applied to the other entities gradually. The new features of the Drug Warnings Browser are described below. More visible buttons to link to other entities This functionality is already available in the old entity browsers, but the button to use it is not easily recognised. In the new version, the buttons are more visible. By using those buttons, users can see the related activities, compounds, drugs, mechanisms of action and drug indications to the drug warnings selected. The page will take users to the corresponding entity browser with the items related to the ones selected, or to all the items in the dataset if the user didn’t select any. Additionally, the process of creating the join query is no