Skip to main content

RDKit and Raphael.js



The ChEMBL group had the honour of hosting the second RDKit UGM. It was a great way to catch up with the RDKit community, find out about what they are working and learn about new features the toolkit offers. We gave two talks during the meeting, so if you want to know how Clippy can make interacting with different chemical formats on your desktop easier, go here, and if you want to learn about wrapping RDKit up in a RESTful Web Service a.k.a. Beaker (to be described in future blog post), go here. Many discussions about new features RDKit could offer were had throughout the meeting and one which caught my attention was support for plotting compound images on HTML5 Canvas.

Unable to participate in a hackathon held on the final day, I set about hosting my own small hackathon during the weekend (only 1 attendee). The result of this weekend coding effect was a pull request made against RDKit github repo, introducing the new class called JSONCanvas.

Technical Details

As a general rule of the past, the model for generating image relies on the server to sending a binary representation of the compound (e.g. .png, .jpeg) to the client. With advances in browser technologies, it is now feasible to rely on the client to generate the graphical representation of the compound as it now has access to many methods, which allows it to handle geometrical primitives. It can decide if those primitives should be rendered as SVG, VML or even HTML5 Canvas (check out  Kinetic.js for HTML5 canvas rendering, as it knows how to draw some core shapes on canvas). 

My solution uses Raphael.js - a JavaScript library for drawing vector graphics in the browser. For displaying the graphic is uses SVG on browsers that support this format. On older browsers it will fail over to VML. In the library documentation we can find a very interesting method called Paper.add(). This method accepts JSON containing an array of geometrical objects (such as circle, rectangle, path) to be displayed and returns a handle for manipulating (moving, rotating, scaling) the object as a whole. This means that if we could create a JSON object, which uses shapes to represent a chemical compound, we could draw it or manipulate the compound directly. The new JSONCanvas class produces the previously described JSON object for any* given RDKit compound.

(*I am sure we might find a couple of exceptions)

But why?

1. Cost - reduced server processing required to raster image and often third-party drawing libraries are also required.

2. Bandwidth - reduced bandwidth required to transfer JSON representation of compounds. Also, as it  is text-based you can employ further compression (by configuring your server to send gziped JSON which most modern browsers understand) or using AMF.

3. Accuracy - improved scaling quality made possible with vector graphics.

4. Interactivity - compounds rendered using JSON on the client side can handle standard events such as click, hover, etc. Complex operations (animating, sorting, dragging,...), can also be applied to these objects.

Usage

As an example usage of this technique please look at our chemical game. To give you some idea of scale and performance the game loads 1000 compounds when page first loads. If you want to see raw example please explore source of my demo page. Other examples can involve:

1.  Online compound cloud (similar to tag cloud but with compound images instead of words). Such a cloud can be used to visualise compound similarity.

2. Compound stream - substructure search can sometimes return very large number of results. Such results can be represented as pseudo-infinite stream of compounds - only small portion of results is presented on the screen but scrolling down causes more results to be rendered when older one are discarded.

How can I use it?

1. You can download my fork or RDKit containing all relevant changes.

2. Today Greg Landrum, RDKit creator made his own branch containing modified version of the original pull request, so hopefully this is on it's way to be accepted in master branch in future.

As a group we are happy to participate in such a great open source library!

--
Michał

Comments

Popular posts from this blog

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...