Skip to main content

A python client for accessing ChEMBL web services

Motivation
The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python.

Why Python?
We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python.


Reinventing the wheel?
There are already some libraries providing access to ChEMBL data via webservices for example bioservices. These are great, but sometimes suffer from breaking as we implement required schema or implementation details. With the use of this client you can be sure that any future changes in REST API will be immediately reflected in the client. But this is not the only thing we tried to achieve.


Features
During development of the Python client we had in mind all the best practices for creating such a library. We tried to make is as easy to use and efficient as possible. Key features of this implementation are:
  • Caching results locally in sqliteDB for faster access
  • Bulk data retrieval
  • Parallel asynchronous requests to API during bulk retrieval
  • Ability to use SMILES containing URL-unsafe characters in exactly same way as safe SMILES
  • Lots of syntactic sugar
  • Extensive configuration so you can toggle caching, asynchronous requests, change timeouts, point the client to your local web services instance and much more.
These features guarantee that your code using the ChEMBL REST API will be as fast as possible (if you know of any faster way,  drop us a line and we will try to include in the code).


Demo code
OK, so let's see the live code (all examples are included in tests.py file). If you are an ipython notebook fan (like most of us) and prefer reading from notebooks instead of github gists you can click here:


So many features, just for compounds! Let's see targets:


So far, so good! What about assays?


Can I get bioactovities as well?

It's completely optional to change any settings in the ChEMBL client. We believe that default values we have chosen are optimal for most reasonable applications. However if you would like to have a play with settings to make our client work with your local webservices instance this is possible:



GET or POST?




Benchmarks

We've decided to compare our client with existing bioservices implementation. Before we describe method and results, let's say a few words about installation process. Both packages can be installed from PIP, but bioservices are quite large (1.8MB) and require dependencies not directly related to web retrieval (such as pandas or SOAPpy). On the other hand our client is rather small (<0.5 MB) and require requests, request-cache and grequests.

To compare two libraries, we've decided to measure time of retrieval first thousand of compounds with IDs from CHEMBL1 to CHEMBL1000. We've ignored 404 errors. This is how the code looks for our client:


And for bioservices:


Both snippets were run 5 times and the average time was computed.


Results:
chembl client with cache: 4.5s
chembl client no cache: 6.7s
bioservices: 9m40s


which means, that our client is 86-145 times faster than the bioservices client.


Installation and source code



Our client is already available at Python Package Index (PyPI), so in order to install it on your machine machine, you should type:

sudo pip install chembl_webresource_client

or:

pip install chembl_webresource_client

if you are using virtualenv.

The original source code is open sourced and hosted at github so you can clone it by typing:

git clone https://github.com/chembl/chembl_webresource_client.git

install latest development version, using following pip command:

sudo pip install git+https://github.com/chembl/chembl_webresource_client.git  
 
or just browse it online.


What about other programming languages?

Although we don't have plans to release a similar client library for other programming languages, examples highlighting most important API features using Perl and Java are published on Web Services homepage. And since the Web Services have CORS and JSONP support, we will publish JavaScript examples in the form of interactive API browser, so stay tuned!


Michal

Comments

Thomas Cokelaer said…
A short comment with respect to the difference of speed between BioServices and your implementation on the example provided (9 minutes instead of a few seconds sounds bad indeed).

If you use the latest version of BioServices (1.3.5), this should now be equivalent in terms of speed. The reason for the slow behaviour in previous versions was that we were waiting 1 second between requests (if the request was failing) to be nice with ChEMBL REST API.

Thomas Cokelaer, on behalf of BioServices users and developers.

BioServices on Pypi

BioServices on github

Popular posts from this blog

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...

In search of the perfect assay description

Credit: Science biotech, CC BY-SA 4.0 Assays des cribe the experimental set-up when testing the activity of drug-like compounds against biological targets; they provide useful context for researchers interested in drug-target relationships. Ver sion 33 of ChEMBL contains 1.6 million diverse assays spanning ADMET, physicochemical, binding, functional and toxicity experiments. A set of well-defined and structured assay descriptions would be valuable for the drug discovery community, particularly for text mining and NLP projects. These would also support ChEMBL's ongoing efforts towards an  in vitro  assay classification. This Blog post will consider the features of the 'perfect' assay description and provide a guide for depositors on the submission of high quality data. ChEMBL's assays are typically structured with the overall aim, target, and method .  The ideal assay description is succinct but contains all the necessary information for easy interpretation by database u...