Skip to main content

New Drug Approvals 2014 - Pt. X - Albiglutide (Eperzan™ or Tanzeum™)



Wikipedia: Albiglutide
ChEMBLCHEMBL2107841

On April 15th the FDA approved Tanzeum (albiglutide) subcutaneous injection to improve glycemic control, along with diet and exercise, in adults with type 2 diabetes.

Type II diabetes

Type II diabetes is a metabolic disorder that is characterized by high blood sugar (hyperglycemia) due to insulin resistance or relative lack of insulin. The disease affects millions of patient world-wide and can lead to long-term complications if the blood levels are not lowered in the patients: heart diseases, strokes and kidney failure.

Albiglutide

The drug is a dipeptidyl peptidase-4-resistant glucagon-like peptide-1 dimer fused to human albumin.
Schematic representation of the albiglutide (EMA)

Mode of action

Traditionally, a decrease in the glucose blood level of affected patients is triggered using insulin injections. One alternative mechanism consists at indirectly stimulating insulin release using a glucagon-like peptide-1 (GLP-1) or an analogue of the corresponding receptor.
GLP-1 receptor agonists are of particular interest, as they naturally stop simulating insulin release when plasma glucose concentration is in the fasting range, and hence preventing hypoglycemia in the patient too.
The natural half-life of GLP-1 is less than 2 minutes in the human blood, the peptide is rapidly degraded by an enzyme called dipeptidyl peptidase-4. On the other hand, albiglutide half-life ranges between four to seven days (resistance to dipeptidyl peptidase-4), a considerably longer time than endogenous peptide and than the others GLP-1 analogous drugs (exenatide and liraglutide). This property allows to reduce the number of injections in diabetic patient to biweekly or weekly instead of daily, hence considerably increasing treatment overheads.

Clinical trials

A series of eight clinical trials involving over 2,000 patients with type II diabetes demonstrated the safety and effectiveness of the drug. Patients reported improved HbA1c level (hemoglobin A1c or glycosylated hemoglobin, a measure of blood sugar control). The most common side-effects observed were diarrhea, nausea, and injection site reactions.

Indication and warnings

Albiglutide can be used as a stand-alone as well as in combination therapy (with metformin, glimepiride, pioglitazone, or insulin for instance). The drug is not suited to treat type I diabetes and not indicated for patients with increased ketones in their blood or urine. Albiglutide should be used only when diet and exercise therapies are not successful.
The drug has an FDA boxed warning, as cases of tumors of the thyroid gland have been observed in rodent studies with some other GLP-1 receptor agonists. The FDA further required post-marketing studies regarding dose, efficacy and safety in pediatric patients and for cardiovascular outcomes in patients with high baseline risk of cardiovascular disease.

Tradenames

The drug was invented by Human Genome Sciences and was developed in collaboration with GSK. Albiglutide is marketed as Eperzan in Europe and Tanzeum in the USA.

Comments

Popular posts from this blog

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

ChEMBL 29 Released

  We are pleased to announce the release of ChEMBL 29. This version of the database, prepared on 01/07/2021 contains: 2,703,543 compound records 2,105,464 compounds (of which 2,084,724 have mol files) 18,635,916 activities 1,383,553 assays 14,554 targets 81,544 documents Data can be downloaded from the ChEMBL FTP site:   https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29 .  Please see ChEMBL_29 release notes for full details of all changes in this release: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29/chembl_29_release_notes.txt New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document IDs CHEMBL4649982-CHEMBL4649998): The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesiz

Identifying relevant compounds in patents

  As you may know, patents can be inherently noisy documents which can make it challenging to extract drug discovery information from them, such as the key targets or compounds being claimed. There are many reasons for this, ranging from deliberate obfuscation through to the long and detailed nature of the documents. For example, a typical small molecule patent may contain extensive background information relating to the target biology and disease area, chemical synthesis information, biological assay protocols and pharmacological measurements (which may refer to endogenous substances, existing therapies, reaction intermediates, reagents and reference compounds), in addition to description of the claimed compounds themselves.  The SureChEMBL system extracts this chemical information from patent documents through recognition of chemical names, conversion of images and extraction of attached files, and allows patents to be searched for chemical structures of interest. However, the curren

Julia meets RDKit

Julia is a young programming language that is getting some traction in the scientific community. It is a dynamically typed, memory safe and high performance JIT compiled language that was designed to replace languages such as Matlab, R and Python. We've been keeping an an eye on it for a while but we were missing something... yes, RDKit! Fortunately, Greg very recently added the MinimalLib CFFI interface to the RDKit repertoire. This is nothing else than a C API that makes it very easy to call RDKit from almost any programming language. More information about the MinimalLib is available directly from the source . The existence of this MinimalLib CFFI interface meant that we no longer had an excuse to not give it a go! First, we added a BinaryBuilder recipe for building RDKit's MinimalLib into Julia's Yggdrasil repository (thanks Mosè for reviewing!). The recipe builds and automatically uploads the library to Julia's general package registry. The build currently targe

New Drug Warnings Browser

As mentioned in the announcement post of  ChEMBL 29 , a new Drug Warnings Browser has been created. This is an updated version of the entity browsers in ChEMBL ( Compounds , Targets , Activities , etc). It contains new features that will be tried out with the Drug Warnings and will be applied to the other entities gradually. The new features of the Drug Warnings Browser are described below. More visible buttons to link to other entities This functionality is already available in the old entity browsers, but the button to use it is not easily recognised. In the new version, the buttons are more visible. By using those buttons, users can see the related activities, compounds, drugs, mechanisms of action and drug indications to the drug warnings selected. The page will take users to the corresponding entity browser with the items related to the ones selected, or to all the items in the dataset if the user didn’t select any. Additionally, the process of creating the join query is no