Skip to main content

myChEMBL on Bare Metal




myChEMBL is distributed as a Virtual Machine (VM), which is good because you can treat it like another file on your filesystem. It can be transmitted, copied, renamed, deleted, etc. The myChEMBL VM behaves like a sandbox, so software installed there can't harm your computer.

But there are sometimes costs associated with using a VM, for example VMs are usually several percent slower than the host they are running on. There are also a number of scenarios where using a VM may not optimal or even possible, for example:
  • You just want to enrich your existing machine with chemistry-related software
  • The only machine you have is itself virtual - VM provisioning software often prevents you from installing a VM within a VM
  • When performance is critical
In these cases you may not want the whole myChEMBL VM, only the software that it ships with.

Fortunately we have a script, that automates the process of creating our customized VM. But not only that - we keep it publicly available along with all other resources, necessary to build myChEMBL! The main entry point is a bash script called 'bootstrap.sh', which when executed it performs following steps:
  • Creates user called 'chembl' and adds it to sudoers list
  • Updates software distribution channels and upgrades OS
  • Installs common software libraries required by our tools
  • Installs python/ipython notebook/postgres DB
  • Sets up python environment using virtualenvwrapper/virtulenv
  • Downloads ChEMBL_18 data dump, and stores it in freshly created database
  • Installs RDKit and builds postgres cartridge
  • Installs and configures a web server and all resources that will be accessible via browser
  • Configures network
  • Adds some branding

How to use it?

Just run:

curl -s https://raw.githubusercontent.com/chembl/mychembl/master/bootstrap.sh | bash 

you can optionally wrap it with 'time' to know how long did it take to execute: 

time(curl -s https://raw.githubusercontent.com/chembl/mychembl/master/bootstrap.sh | bash) 

It takes about 6 hours on our machines, but we have fast internet connection. It could take 2-3 times longer on your connection, depending on bandwidth and your computer speed. The script is extremely verbose so you will easily notice what is being installed at the moment. Tip: you can redirect stdout/stderr to file(s) or even /dev/null to make it silent.

What takes the most time?

Depending on your configuration these are most time consuming operations performed during execution of the script:
  • Creating fingerprints and indexes for chemistry cartridge
  • Downloading ChEMBL_18 dump from EBI's FTP (917 MB)
  • Compiling libraries
Requirements

Currently 'bootstrap.sh' script was tested only on Ubuntu. It should work on every standard Ubuntu release since 12.04 (and probably Linux Mint as well). It's possible that the script will work fine (after some minor tweaks) with Debian since Ubuntu is based on it and they both use the same package manager. In future we are planning to make it work with other systems (CentOS and RedHat).

Furthermore, in order to execute this script you should have root privileges as it uses 'sudo' many times.

Is it safe?

What we are asking you to do is a "curl pipe sh" pattern, which may be of some security concern.
We believe this is fastest, most convenient and elegant way for majority of our users. If you trust:
  • Your internet connection (no man in the middle, would be hard anyway since we are using https here).
  • github.com.
  • us at ChEMBL (we hope so!)
If you are not convinced, you can do:
  1. curl -o bootstrap.sh  https://github.com/chembl/mychembl/blob/master/bootstrap.sh
  2. Carefully analyze contents, making sure there is no malware
  3. chmod +x bootstrap.sh
  4. ./bootstrap.sh
In that case, please note that this process can be recursive since, bootstrap.sh itself contains "curl pipe sh" pattern many times.

Let us know if you have any follow up questions about this post or about myChEMBL.

Comments

Popular posts from this blog

UniChem 2.0

UniChem new beta interface and web services We are excited to announce that our UniChem beta site will become the default one on the 11th of May. The new system will allow us to better maintain UniChem and to bring new functionality in a more sustainable way. The current interface and web services will still be reachable for a period of time at https://www.ebi.ac.uk/unichem/legacy . In addition to it, the most popular legacy REST endpoints will also remain implemented in the new web services: https://www.ebi.ac.uk/unichem/api/docs#/Legacy Some downtime is expected during the swap.  What's new? UniChem’s current API and web application is implemented with a framework version that’s not maintained and the cost of updating it surpasses the cost of rebuilding it. In order to improve stability, security, and support the implementation and fast delivery of new features, we have decided to revamp our user-facing systems using the latest version of widely used and maintained frameworks, i

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

LSH-based similarity search in MongoDB is faster than postgres cartridge.

TL;DR: In his excellent blog post , Matt Swain described the implementation of compound similarity searches in MongoDB . Unfortunately, Matt's approach had suboptimal ( polynomial ) time complexity with respect to decreasing similarity thresholds, which renders unsuitable for production environments. In this article, we improve on the method by enhancing it with Locality Sensitive Hashing algorithm, which significantly reduces query time and outperforms RDKit PostgreSQL cartridge . myChEMBL 21 - NoSQL edition    Given that NoSQL technologies applied to computational chemistry and cheminformatics are gaining traction and popularity, we decided to include a taster in future myChEMBL releases. Two especially appealing technologies are Neo4j and MongoDB . The former is a graph database and the latter is a BSON document storage. We would like to provide IPython notebook -based tutorials explaining how to use this software to deal with common cheminformatics p

ChEMBL 30 released

  We are pleased to announce the release of ChEMBL 30. This version of the database, prepared on 22/02/2022 contains: 2,786,911 compound records 2,157,379 compounds (of which 2,136,187 have mol files) 19,286,751 activities 1,458,215 assays 14,855 targets 84,092 documents Data can be downloaded from the ChEMBL FTP site: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_30/ Please see ChEMBL_30 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_30/chembl_30_release_notes.txt New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document ID CHEMBL4689842):   The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesize at least

Multi-task neural network on ChEMBL with PyTorch 1.0 and RDKit

  Update: KNIME protocol with the model available thanks to Greg Landrum. Update: New code to train the model and ONNX exported trained models available in github . The use and application of multi-task neural networks is growing rapidly in cheminformatics and drug discovery. Examples can be found in the following publications: - Deep Learning as an Opportunity in VirtualScreening - Massively Multitask Networks for Drug Discovery - Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set But what is a multi-task neural network? In short, it's a kind of neural network architecture that can optimise multiple classification/regression problems at the same time while taking advantage of their shared description. This blogpost gives a great overview of their architecture. All networks in references above implement the hard parameter sharing approach. So, having a set of activities relating targets and molecules we can tra