Skip to main content

How to install myChEMBL using two Vagrant commands

 

 

 

TL;DR

  1. install Vagrant and VirtualBox
  2. run vagrant init chembl/myChEMBL && vagrant up
  3. wait a bit...
  4. go to http://127.0.0.1:8000/
  5. enjoy!

What have I just done?


Vagrant is a tool for building and deploying complete development environments and myChEMBL 18 now supports installation via Vagrant. We achieved this by first creating a myChEMBL Vagrant Box, which we then register on the Vagrant Cloud. This then allows users to install myChEMBL on there local system using two simple commands*:

vagrant init chembl/myChEMBL
vagrant up


*assumes you have vagrant installed

It's that simple! After you type this into your system console, the expected output should be similar to the one below:




What are those two commands doing?


The first command initializes the current directory to be a Vagrant environment by creating an initial Vagrantfile and prepopulates the config.vm.box setting in the created Vagrantfile. This happens immediately. This command should be executed only once.

The second one, when executed for the first time, downloads myChEMBL box file from the public repository, unpacks it and store downloaded files into a dedicated directory on your machine, so you won't have to download it again. Then, it configures myChEMBL virtual machines and runs it using VirtualBox. The box file is big (7GB) so it will take some time to download and uncompress, but this will happen only once.

OK, so I've executed them successfully, now what?


Just open your favorite browser and type this URL: http://127.0.0.1:8000/. You should see the my ChEMBL LaunchPad (We have seen apache take a little while to fire up, so if you do not see LaunchPad straight away give a couple more minutes).

Can I ssh into the machine?

 

Yes, just type:

vagrant ssh

and you are there. You are logged in as a special 'vagrant' user with root privileges and no password. If you prefer to work as a standard 'chembl' user just type:

sudo su - chembl

Great, now how can I switch the machine off?


Do it by typing:

vagrant halt

You can bring it up anytime using already known command:

vagrant up

which should execute very fast for the second time as everything is already downloaded.

Are there any software dependencies?


Yes, but not many. In order to use Vagrant you should install it. Our configuration currently supports only VirtualBox as a provider so you should install it as well.

What advantages does the myChEMBL Vagrant install offer over the standard myChEMBL installation?

  1. First of all, you don't have to remember the download URL of where the myChEMBL Vagrant box lives. All you need to know is a box name: 'chembl/myChEMBL'.   
  2. You don't have to think about any configuring VirtualBox image (e.g. network settings), as all of the configuration is stored in a Vagranfile prepared by us.
  3. Using command line interface it is easy to deploy myChEMBL on multiple machines automatically. You can run it easily on your headless server.
  4. The download is smaller, so it will download faster. The box file size is 7.1GB compared to 8.5 GB of standard myChEMBL-18_0-disk1.vmdk file.
If future, we plan to support more providers, in particular Amazon Web Services and Docker.
We also plan to make provisioning more flexible so if needed you will be able to choose what Linux distribution should be used as a base for your myChEMBL (Red Hat and CentOS are the most important distros we would like to support).

Bugs and help


We've found a couple of minor bugs since the release of myChEMBL 18. They are all fixed now and mychembl vagrant box includes all the fixes. If you happen to find any other issue, related to myChEMBL or specific to our vagrant distribution, please report it to mychembl[at]ebi.ac.uk.

You can always check for new updates using following command:

vagrant box outdated

In case new updated are available you can update the box by running:

vagrant box update

Just please remember that updating the box means downloading it from remote repository so it will take some time. Also note that this command will not magically update running Vagrant environments. If a Vagrant environment is already running, you'll have to destroy and recreate it to acquire the new updates in the box.

In our next myChEMBL related blog post we will tell you how to install myChEMBL on local VM or 'metal' machine running Ubuntu (Hint: have a look at this file).

Comments

Popular posts from this blog

UniChem 2.0

UniChem new beta interface and web services We are excited to announce that our UniChem beta site will become the default one on the 11th of May. The new system will allow us to better maintain UniChem and to bring new functionality in a more sustainable way. The current interface and web services will still be reachable for a period of time at https://www.ebi.ac.uk/unichem/legacy . In addition to it, the most popular legacy REST endpoints will also remain implemented in the new web services: https://www.ebi.ac.uk/unichem/api/docs#/Legacy Some downtime is expected during the swap.  What's new? UniChem’s current API and web application is implemented with a framework version that’s not maintained and the cost of updating it surpasses the cost of rebuilding it. In order to improve stability, security, and support the implementation and fast delivery of new features, we have decided to revamp our user-facing systems using the latest version of widely used and maintained frameworks, i

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

LSH-based similarity search in MongoDB is faster than postgres cartridge.

TL;DR: In his excellent blog post , Matt Swain described the implementation of compound similarity searches in MongoDB . Unfortunately, Matt's approach had suboptimal ( polynomial ) time complexity with respect to decreasing similarity thresholds, which renders unsuitable for production environments. In this article, we improve on the method by enhancing it with Locality Sensitive Hashing algorithm, which significantly reduces query time and outperforms RDKit PostgreSQL cartridge . myChEMBL 21 - NoSQL edition    Given that NoSQL technologies applied to computational chemistry and cheminformatics are gaining traction and popularity, we decided to include a taster in future myChEMBL releases. Two especially appealing technologies are Neo4j and MongoDB . The former is a graph database and the latter is a BSON document storage. We would like to provide IPython notebook -based tutorials explaining how to use this software to deal with common cheminformatics p

ChEMBL 30 released

  We are pleased to announce the release of ChEMBL 30. This version of the database, prepared on 22/02/2022 contains: 2,786,911 compound records 2,157,379 compounds (of which 2,136,187 have mol files) 19,286,751 activities 1,458,215 assays 14,855 targets 84,092 documents Data can be downloaded from the ChEMBL FTP site: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_30/ Please see ChEMBL_30 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_30/chembl_30_release_notes.txt New Deposited Datasets EUbOPEN Chemogenomic Library (src_id = 55, ChEMBL Document ID CHEMBL4689842):   The EUbOPEN consortium is an Innovative Medicines Initiative (IMI) funded project to enable and unlock biology in the open. The aims of the project are to assemble an open access chemogenomic library comprising about 5,000 well annotated compounds covering roughly 1,000 different proteins, to synthesize at least

Multi-task neural network on ChEMBL with PyTorch 1.0 and RDKit

  Update: KNIME protocol with the model available thanks to Greg Landrum. Update: New code to train the model and ONNX exported trained models available in github . The use and application of multi-task neural networks is growing rapidly in cheminformatics and drug discovery. Examples can be found in the following publications: - Deep Learning as an Opportunity in VirtualScreening - Massively Multitask Networks for Drug Discovery - Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set But what is a multi-task neural network? In short, it's a kind of neural network architecture that can optimise multiple classification/regression problems at the same time while taking advantage of their shared description. This blogpost gives a great overview of their architecture. All networks in references above implement the hard parameter sharing approach. So, having a set of activities relating targets and molecules we can tra