Skip to main content

2010 New Drug Approvals - Pt. XV - Lurasidone (Latuda)



ATC code (partial): N05AE


On October 28th 2010, the FDA approved Lurasidone (Tradename:Latuda) (Lurasidone is also known by the research code SM-13,496). Lurasidone is an atypical antipsychotic agent indicated for the treatment schizophrenia.

Lurasidone displays broad polypharmacology against a wide range of rhodopsin-like aminergic GPCRs, acting as an antagonist with high affinity at dopamine D2 receptors (Uniprot: P14416, ChEMBL: 72) (Ki of 1 nM), serotonin 5-HT2A (Uniprot: P28223, ChEMBL: 107) (Ki of 0.47 nM) and 5-HT7 receptors (Uniprot: P34969, ChEMBL: 10209) (Ki of 0.49 nM), and with moderate affinity at alpha-2C adrenergic receptors (Uniprot: P18825, ChEMBL: 218) (Ki of 10.8 nM) and at alpha-2A adrenergic receptors (Uniprot: P08913, ChEMBL: 52) (Ki of 40.7 nM). Lurasidone acts also as a partial agonist at serotonin 5-HT1A receptors (Uniprot: P08908, ChEMBL: 51) (Ki of 6.4 nM) and exhibits little or no affinity for histamine H1 (Uniprot: P35367, ChEMBL: 127) and muscarinic M1 receptors (Uniprot: P11229, ChEMBL: 61) (IC50 > 1000 nM and IC50 > 1000 nM, respectively). The efficacy of Luasidone is thought to be primarily related to the D2 and 5HT2A antagonism. All atypical antipsychotics display this complex polypharmacology.

Lurasidone is a synthetic small-molecule drug (Molecular Weight of 492.7 g/mol for Lurasidone itself and 529.14 g.mol-1 for the dosed HCl salt), is fully Rule-of-Five compliant, lipophilic and very slightly soluble in water.

Lurasidone has low systemic bioavailability (9-19%), and a high volume of distribution of 6173L, and displays high plasma protein binding (ppb) of ~99%. The half life is 18 hours, and steady-state plasma levels are reached 7 days after starting regular dosing. Lurasidone is predominantly metabolized by CYP3A4 into four major metabolites (two active metabolites and two 'inactive') - metabolites include hydroxylation of the nornbornane ring, N-dealkylation and S-oxidation. The apparent clearance is 3902mL/min, with the bulk of the drug being excreted in the feces. Dosage is oral, with a recommended starting dosage is 40 mg once daily (equivalent to 81umol), with a recommended maximum dosage of 80 mg daily.


Lurasidone is a chiral benzoisothiazol derivative - the benzoisothiazol is the fused five-six dual ring structure on the right of the figure above. Its structure (3aR,4S,7R,7aS)-2-{(1R,2R)-2-[4-(1,2-benzisothiazol-3-yl)piperazin-1-ylmethyl] cyclohexylmethyl}hexahydro-4,7-methano-2H-isoindole-1,3-dione contains an imide heterocyclic and a piperazine functional group. The central piperazine nitrogen is basic. The chemical structure, properties and pharmacology are similar to Ziprasidone (Trademark:Geodon).

NAME="Lurasidone"
TRADEMARK_NAME="Latuda"
ATC_code= NA
SMILES="O=C1C2[C@@H]3CC[C@@H](C3)C2C(=O)N1C[C@@H]4CCCC[C@H]4CN5CCN(CC5)c6nsc7ccccc67"
InChI="InChI=1S/C28H36N4O2S/c33-27-24-18-9-10-19(15-18)25(24)28(34)32(27)17-21-6-2-1-5-20(21)16-30-11-13-31(14-12-30)26-22-7-3-4-8-23(22)35-29-26/h3-4,7-8,18-21,24-25H,1-2,5-6,9-17H2/t18-,19+,20-,21-,24?,25?/m0/s1"
ChemDraw=Lurasidone.cdx

The full prescribing information can be found here.

Lurasidone has a boxed warning (colloquially known as a 'black box').

The license holder is Sunovion Pharmaceuticals Inc. and the product website is www.latuda.com

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEM...