Skip to main content

Molecular databases and molecule complexity - part 2



Let have some examples - benzene (chembl277500) is unambiguous, it has no possibility of forming any tautomers, it cannot become protonated or lose a proton (i.e. act as a base or acid) under anything approaching physical conditions, it has no stereocenters, and furthermore has no internal degrees of freedom (it it conformationally rigid). So there is no ambiguity over calculated properties such as logP, molecular weight, etc, and you could take the structure directly from a database and do things like docking with it.



Next is pyridine (chembl266158), this has two biological forms, it is still rigid, and has no stereocenters or tautomeric forms, however, it can act as a base, and so can exist in a protonated form. These two forms have different molecular weights, overall charge and many other differences (for example, it's molecular dipole).


In particular, the binding to a receptor will be very different for these two forms, pyridine can act as a hydrogen bond acceptor, while the protonated for can't, but can act as a hydrogen bond donor - in one important factor the two forms of pyridine are opposite. The fraction of the two forms in biological systems will depend on the pH of the biological or experimental system, and also the pKa of pyridine (around 5.2 for the pKa of the conjugate acid). Typically, chemical databases will calculate and display properties for the neutral form of pyridine. Users, performing tasks such as docking, will probably need to consider both forms and dock two molecules not one.

A slightly more complicated case is 2-hydroxypyridine (chembl662), which is a classic case of tautomerism. The structure can be drawn with alternate bonding, but the two forms can rapidly interconvert. The is a small free energy difference between these two forms. The other tautomer (and the form found in solid samples of 2-hydroxypyridine) has the trivial name 2-pyridone. In solution, both forms are found, with the fractions found of each form depending on the solvent polarity.



These forms have the same molecular mass, have no stereochemical centers, but will have different calculated properties - the clogP will be different for the two forms. It is important to remember though that due to the fact they are rapidly interconvertable, they will appear to have a single logP experimentally. Again, due to the differences in hydrogen bonding potential, two forms need to be considered for a tasks like docking. What chemical databases do with cases like this varies, but typically a single tautomeric form will be used to calculate properties such as logP. What tautomer is used will depend on the particular software used.

Finally, another simple system, this time showing ambiguity over charge - 3-hydroxypyridine (chembl237847). This molecule exists in solution as an equilibrium of two physical forms, a neutral form, and a zwitterion. Calculated properties of these two forms for things like clogP will be different, the molecular weight will be the same, but again, for docking explicit consideration of the two distinct forms is required.


So hopefully, some simple examples showing that a single 2D structure of a molecule in a database can have multiple physically differing forms that can affect the calculation of properties and also have large impact on their use in modelling. Hopefully, I've also highlighted that this complexity is usually poorly handled in chemical databases (not least the current version of ChEMBL).

In the next part, we'll talk about just how complex this ambiguity is, the astronomical number of distinct structural forms possible for some molecules, and also address stereochemistry and conformational flexibility. 

Comments

Egon Willighagen said…
Nice post!

Benzene is unambiguous, because of symmetry only. However, it's delocalization feature does pose problems for databases. Take 1,2-dimethylbenzene, which breaks the symmetry, and you run into the problem that the ring bond between the two methyls can be single or double, or, and that is what many databases do, aromatic.

I am still puzzled why the cheminformatics field did not choose for 'delocalized' instead; aromaticity is just a crappy concept.

Popular posts from this blog

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

ChEMBL webinar @ School of Chemoinformatics in Latin America

Recently, the ChEMBL team participated in the " School of Chemoinformatics in Latin America " which was kindly organized by José Medina-Franco and Karina Martinez-Mayorga (both at the National Autonomous University of Mexico). The event was very well attended with 1,181 registrants from 79 different countries. 57% of the participants attended from Latin America, 23% from Asia, and around 8% from Africa and Europe, respectively. 52% of the participants were students (undergraduate and graduate students). Distribution by country Distribution by role Participants could learn a bou t the ChEMBL database and UniChem. We covered different topics to answer these questions: • What is ChEMBL and how is it structured ? • Which data does ChEMBL contain ? • How is data extracted from scientic articles ? • How is the data in ChEMBL curated ? • How is drug ...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...