Skip to main content

New Drug Approvals 2011 - Part XI Gabapentin enacarbil (HorizantTM)









ATC code (partial): N03AX
  
On April 6th, the FDA approved gabapentin enacarbil (tradename Horizant, Research Code: XP-13512, NDA 022399) for the treatment of moderate-severe forms of restless legs syndrome (RLS).

Patients suffering from RLS experience an urge to move their legs or other limbs. This urge is prompted by a painful or itchy sensation in the corresponding limb. Symptoms are most severe during phases of relaxation. Patients also sometimes have limb jerking during sleep.

Gabapentin enacarbil is a prodrug of the anticonvulsant and analgesic gabapentin (CHEMBL940). Much of the processing of gabapentin enacarbil into the active ingredient takes place in enterocytes, upon absorption in the gut. These first pass modifications are mainly mediated by non-specific carboxylesterases and via several steps of hydrolysis and yield gabapentin (the active ingredient), along with carbon dioxide, acetaldehyde and isobutyric acid. Absorption of Gabapentin into the enterocytes is likely mediated by the monocarboxylate transporter 1 (Uniprot: P53985).

The mechanism of action of gabapentin enacarbil is due entirely to gabapentin, the active component. Gabapentin binds to the a2δ subunit of voltage-gated calcium channels in vitro (Uniprot: Q9NY47). However, it is not fully known how this binding translates into a therapeutic effect. Despite its structural similarity to the neurotransmitter gamma-amino butyric acid (GABA), gabapentin has no effect on the binding, uptake or catabolism of GABA.


Gabapentin enacarbil (Smiles: CC(C(OC(OC(NCC1(CC(O)=O)CCCCC1)=O)C)=O)C, IUPAC: (1-{[({(1RS)-1-[(2-Methylpropanoyl)oxy]ethoxy}carbonyl)amino]methyl} cyclohexyl) acetic acid, InChI: 1S/C16H27NO6/c1-11(2)14(20)22-12(3)23-15(21)17-10-16(9-13(18)19)7-5-4-6-8-16/h11-12H,4-10H2,1-3H3,(H,17,21)(H,18,19), ChemSpider: 8059607) has a molecular weight of 329.39 Da. With two hydrogen bond donors and seven hydrogen bond acceptors and ACD/LogP = 2.66 gabapentin fully complies with the Lipinski rule of five. Gabapentin enacarbil is a racemate, the stereocenter is labelled with an asterisk (in the figure above).



The mean bioavailability of gabapentin enacarbil is 75% in fed state. As for conventional gabapentin, the bioavailability of gabapentin encarbil is lower if administered onto and empty stomach (42-65%).  The TMAX after administration of 600mg of gabapentin enacarbil is ~7h while TMAX for conventional gabapentin is only 2h. Plasma protein binding (ppb) of gabapentin is less than 3% and the volume of distribution is 76 L. The elimination of gabapentin is mainly renal (94% recovered from urine) and renal clearance (CLr) ranges from 5-7 L/hr. While gabapentin enacarbil is extensively processed, the active ingredient gabapentin is not subject to further metabolic modifications. Compared to the parent drug Gabapentin, Gabapentin enacarbil shows an extended release and higher bioavailability. Studies showed no interactions with the major cytochrome P450 enzymes and p-glycoprotein.

The recommended dose for gabapentin enacarbil is 600mg oral, once daily.

The full prescribing information can be found here.

Gabapentin enacarbil is marketed under the name Horizant and was developed by Glaxo Smith Kline and Xenoport.

Comments

Popular posts from this blog

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

LSH-based similarity search in MongoDB is faster than postgres cartridge.

TL;DR: In his excellent blog post , Matt Swain described the implementation of compound similarity searches in MongoDB . Unfortunately, Matt's approach had suboptimal ( polynomial ) time complexity with respect to decreasing similarity thresholds, which renders unsuitable for production environments. In this article, we improve on the method by enhancing it with Locality Sensitive Hashing algorithm, which significantly reduces query time and outperforms RDKit PostgreSQL cartridge . myChEMBL 21 - NoSQL edition    Given that NoSQL technologies applied to computational chemistry and cheminformatics are gaining traction and popularity, we decided to include a taster in future myChEMBL releases. Two especially appealing technologies are Neo4j and MongoDB . The former is a graph database and the latter is a BSON document storage. We would like to provide IPython notebook -based tutorials explaining how to use this software to deal with common cheminformatics p

Multi-task neural network on ChEMBL with PyTorch 1.0 and RDKit

  Update: KNIME protocol with the model available thanks to Greg Landrum. Update: New code to train the model and ONNX exported trained models available in github . The use and application of multi-task neural networks is growing rapidly in cheminformatics and drug discovery. Examples can be found in the following publications: - Deep Learning as an Opportunity in VirtualScreening - Massively Multitask Networks for Drug Discovery - Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set But what is a multi-task neural network? In short, it's a kind of neural network architecture that can optimise multiple classification/regression problems at the same time while taking advantage of their shared description. This blogpost gives a great overview of their architecture. All networks in references above implement the hard parameter sharing approach. So, having a set of activities relating targets and molecules we can tra

ChEMBL 26 Released

We are pleased to announce the release of ChEMBL_26 This version of the database, prepared on 10/01/2020 contains: 2,425,876 compound records 1,950,765 compounds (of which 1,940,733 have mol files) 15,996,368 activities 1,221,311 assays 13,377 targets 76,076 documents You can query the ChEMBL 26 data online via the ChEMBL Interface and you can also download the data from the ChEMBL FTP site . Please see ChEMBL_26 release notes for full details of all changes in this release. Changes since the last release: * Deposited Data Sets: CO-ADD antimicrobial screening data: Two new data sets have been included from the Community for Open Access Drug Discovery (CO-ADD). These data sets are screening of the NIH NCI Natural Product Set III in the CO-ADD assays (src_id = 40, Document ChEMBL_ID = CHEMBL4296183, DOI = 10.6019/CHEMBL4296183) and screening of the NIH NCI Diversity Set V in the CO-ADD assays (src_id = 40, Document ChEMBL_ID = CHEMBL4296182, DOI = 10.601