Skip to main content

New Drug Approvals 2011 - Pt. XXIII Ticagrelor (BrilintaTM)






ATC Code: B01AC24
Wikipedia: Ticagrelor

On July 20th, the FDA approved Ticagrelor (Tradename: Brilinta; Research Code: AZD-6140, NDA 022433), a purinergic receptor P2Y12 platelet antagonist indicated to reduce the rate of thrombotic cardiovascular events in patients with acute coronary syndrome (ACS).

Acute coronary syndrome is often the initial presentation of an individual manifesting coronary artery disease (CAD). ACS can present as unstable angina, non-ST elevation myocardial infarction, or ST elevation myocardial infarction. Typically, ACS begins with the rupture or erosion of a vulnerable plaque in a coronary artery, which results in the exposure of elements under the endothelial layer, such as collagen or von Willebrand factor, to circulating blood. These ligands trigger a series of responses, including platelet adhesion, activation, and aggregation.

Ticagrelor reduces the thrombotic risk in ACS by blocking the P2Y12 receptor on the platelet surface. This drug is the first reversible drug for the Purinergic receptor P2Y12, and prevents the binding of ADP by inducing a reversible conformational change. It is thus an allosteric antagonist. Inhibition of the signal transduction results in reduced exposure of fibrinogen-binding sites to the GP IIb/IIIa receptor and thereby impairment of platelet aggregation. Similarly to other approved drugs to treat ACS, such as Prasugrel (Tradename: Effient; ChEMBL ID: CHEMBL1201772) and contrary to clopidogrel (Tradename: Plavix; ChEMBL ID: CHEMBL1771) and ticlopidine (Tradename: Triclid (Discontinued); ChEMBL ID: CHEMBL833), ticagrelor is not a pro-drug, although its active metabolite (AR-C124910XX) has a comparable potency.

Purinergic receptor P2Y12 (Uniprot accession: Q9H244; ChEMBL ID: CHEMBL2001; OMIM: 609821) is a Rhodopsin-like receptor and therefore it is a member of the G-protein coupled receptor 1 family. The sequence of P2Y12 is:

>P2Y12
MQAVDNLTSAPGNTSLCTRDYKITQVLFPLLYTVLFFVGLITNGLAMRIFFQIRSKSNFI
IFLKNTVISDLLMILTFPFKILSDAKLGTGPLRTFVCQVTSVIFYFTMYISISFLGLITI
DRYQKTTRPFKTSNPKNLLGAKILSVVIWAFMFLLSLPNMILTNRQPRDKNVKKCSFLKS
EFGLVWHEIVNYICQVIFWINFLIVIVCYTLITKELYRSYVRTRGVGKVPRKKVNVKVFI
IIAVFFICFVPFHFARIPYTLSQTRDVFDCTAENTLFYVKESTLWLTSLNACLDPFIYFF
LCKSFRNSLISMLKCPNSATSLSQDNRKKEQDGGDPNEETPM

There are no known 3D structures for this protein, but there are now several relevant homologous structures of other members of the family (see here for a current list of rhodopsin-like GPCR structures).

The -grel- or -grel USAN/INN stem covers primarily platelet P2Y12 receptor antagonists. Ticagrelor is the first reversible inhibitor of this class, and ticlopidine, clopidogrel and prasugrel all bind irreversibly to P2Y12. Other compounds in this class in late stage clinical development/registration include Portola Pharmaceuticals' elinogrel (Research code: PRT 060128), The Medicines Company's cangrelor (Research code: AR-C69931XX), and the Inspire Pharmaceuticals' regrelor (Research code: INS50589). Others at earlier stages of development include Arena Pharmaceuticals' temanogrel (Research code: APD791).




Ticagrelor (IUPAC: (1S,2S,3R,5S)-3-[7-[[(1R,2S)-2-(3,4-difluorophenyl)cyclopropyl]amino]-5-propylsulfanyltriazolo[4,5-d]pyrimidin-3-yl]-5-(2-hydroxyethoxy)cyclopentane-1,2-diol; SMILES: CCCSC1=NC2=C(C(=N1)N[C@@H]3C[C@H]3C4=CC(=C(C=C4)F)F)N=NN2[C@@H]5C[C@@H]([C@H]([C@H]5O)O)OCCO; PubChem:9871419; Chemspider:8047109, ChEMBLID: CHEMBL398435, Standard InChI Key:OEKWJQXRCDYSHL-FNOIDJSQSA-N) has a molecular weight of 522.6 Da, contains 4 hydrogen bond donors, 8 hydrogen bond acceptors, and has an ALogP of 2.37. Ticagrelor contains six defined stereocenters. Ticagrelor is a cyclopentyl-triazolo-pyrimidine and these agents are relatively resistant to enzymatic degradation by ectonucleotidases. Ticagrelor has clear structural resemblance to adenosine, the endogenous ligand for P2Y12, we have classified it as a natural product-derived small molecule drug.

Ticagrelor is available as an oral film-coated tablets of 90 mg, and the recommend daily dose is 180 mg (equivalent to 34.4 umol). It has an apparent volume of distribution of 88 L and its mean absolute bioavailability is 36% (range 30%-42%). Absorption of ticagrelor occurs with a median tmax of 1.5 h, and the formation of its active metabolite occurs with a median tmax of 2.5 hr. Both compounds are extensively bound to human plasma proteins (>99%). The mean plasma half-life (t1/2) is approximately 7 hours for ticagrelor and 9 hr for the active metabolite.

Ticagrelor is mainly metabolised by CYP3A4 and to a lesser extent by CYP3A5; therefore, other therapeutic agents that inhibit or induce these enzymes may alter their therapeutic effect or lead to adverse DDIs. In vitro metabolism studies demonstrate that ticagrelor and its active metabolite are inhibitors of the P-gp transporter. Ticagrelor has been studied in ACS in combination with aspirin. Maintenance doses of aspirin above 100 mg decreased the effectiveness of ticagrelor.

Ticagrelor has been issued with a black box warning because, like other antiplatelet agents, it can cause potentially fatal bleeding.

The license holder for Ticagrelor is AstraZeneca, and the full prescribing information can be found here. Ticagrelor was approved in the EU in 2010 and is commercialised under the tradename Brilique. The European SPC can be found here.

Comments

Dinesh Kumar said…
i like this post. I get more information and feel happy, also provides drug discovery services in globe. we are leading Bio and Pharmaceuticals service company. If you like to contact - Informatics Outsourcing
jpo said…
We are glad this made you happy.
Bio to Chem said…
An informative set of links John, as usual, but probably time to toggle that "Approved drug " field in CHEMBL398435 from no to "yes"

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d