Skip to main content

New Drug Approvals 2012 - Pt. XIV - Mirabegron (MyrbetriqTM)


ATC Code: G04BD (incomplete)
Wikipedia: Mirabegron


On June 28 2012, the FDA approved Mirabegron (tradename: Myrbetriq; Research Code: YM-178), a novel, first-in-class selective β3-adrenergic receptor agonist indicated for the treatment of overactive bladder (OAB) with symptoms of urge urinary incontinence, urgency, and urinary frequency. OAB syndrome is a urological condiction defined as urinary urgency, usually accompanied by frequency and nocturia, with or without urge urinary incontinence, in the absence of urinary tract infection or other obvious pathology. Mirabegron acts by relaxing the detrusor smooth muscle during the storage phase of the urinary bladder fill-void cycle by activation of β3-receptor which in turn increases bladder capacity.

Other treatments for OAB are already in the market and these include treatments with antimuscarinic drugs, such as Flavoxate (approved in 1970; tradename: Urispas; ChEMBL: CHEMBL1493), Oxybutynin (approved in 1975, tradenames: Ditropan, Ditropan XL, Oxytrol, Gelnique, Anturol; ChEMBL: CHEMBL1231), Tolterodine (approved in 1998; tradenames: Detrol, Detrol LA; ChEMBL: CHEMBL1382), Trospium (approved in 2004; tradenames: Santura, Santura XR; ChEMBL: CHEMBL1201344), Solifenacin (approved in 2004; tradenames: Vesicare; ChEMBL: CHEMBL1200803), Darifenacin (approved in 2004; tradenames: Enablex; ChEMBL: CHEMBL1346) and Fesoterodine (approved in 2008; tradenames: Toviaz; ChEMBL: CHEMBL1201764). While these drugs act by inhibiting the muscarinic action of acethylcholine, Mirabegron represents the first β3-receptor agonist to ever reach the market.

β3-receptor (ChEMBL: CHEMBL246; Uniprot: P13945) is a 408 amino-acid long G protein-coupled receptor (GPCR), belonging to Rhodopsin family (PFAM: PF00001; subfamily A17). Crystal structures of the closely related Î²1- and Î²2-receptors are known and act as good frameworks for understanding the mode of action of Mirabegron.

>ADRB3_HUMAN Beta-3 adrenergic receptor
MAPWPHENSSLAPWPDLPTLAPNTANTSGLPGVPWEAALAGALLALAVLATVGGNLLVIV
AIAWTPRLQTMTNVFVTSLAAADLVMGLLVVPPAATLALTGHWPLGATGCELWTSVDVLC
VTASIETLCALAVDRYLAVTNPLRYGALVTKRCARTAVVLVWVVSAAVSFAPIMSQWWRV
GADAEAQRCHSNPRCCAFASNMPYVLLSSSVSFYLPLLVMLFVYARVFVVATRQLRLLRG
ELGRFPPEESPPAPSRSLAPAPVGTCAPPEGVPACGRRPARLLPLREHRALCTLGLIMGT
FTLCWLPFFLANVLRALGGPSLVPGPAFLALNWLGYANSAFNPLIYCRSPDFRSAFRRLL
CRCGRRLPPEPCAAARPALFPSGVPAARSSPAQPRLCQRLDGASWGVS


Mirabegron is a synthetic chiral small-molecule, with a molecular weight of 396.51 Da, a AlogP of 2.26, 4 hydrogen bond donors and 5 hydrogen bond acceptors, and thus fully rule-of-five compliant. (IUPAC: 2-(2-amino-1,3-thiazol-4-yl)-N-[4-[2-[[(2R)-2-hydroxy-2-phenylethyl]amino]ethyl]phenyl]acetamide; Canonical Smiles: C1=CC=C(C=C1)[C@H](CNCCC2=CC=C(C=C2)NC(=O)CC3=CSC(=N3)N)O; InChI: InChI=1S/C21H24N4O2S/c22-21-25-18(14-28-21)12-20(27)24-17-8-6-15(7-9-17)10-11-23-13-19(26)16-4-2-1-3-5-16/h1-9,14,19,23,26H,10-13H2,(H2,22,25)(H,24,27)/t19-/m0/s1)

The recommended starting dosage of Mirabegron is 25 mg once daily, with or without food, and is effective for 8 weeks. Depending individual patient efficacy and tolerability, the dose may be increased to 50 mg once daily.

Mirabegron has a bioavalibity of 29% at a dose of 25 mg, which increases to 35% at a dose of 50 mg, a volume of distribution (Vd) of approximately 1670 L and a moderate plasma protein binding of ca. 71%. Mirabegron is metabolized via multiple pathways involving dealkylation, oxidation, glucuronidation and amide hydrolyis. Studies have suggested that although CYP3A4 and CYP2D6 isoenzymes play a role in the oxidative metabolism of Mirabegron, this is a limited role in the overall elimination. In addition to these isoenzymes, the metabolism of Mirabegron may also involve butylcholinesterase, uridine diphospho-glucuronosyltransferases and alcohol dehydrogenase. Two major inactive metabolites were observed in human plasma and these represent 16% and 11% of the total exposure. Mirabegron total clearance (CLtot) from plasma is ca. 57 L/h, with a terminal half-life of approximately of 50 hours. Renal clearance (CLR) is approximately 13 L/h, which corresponds to nearly 25% of CLtot. The urinary elimination of unchanged Mirabegron is dose-dependent and ranges from ca. 6% after a daily dose of 25 mg to 12.2% after a daily dose of 100 mg.

The license holder is Astellas Pharma Inc. and the full prescribing information of Mirabegron can be found here.

Comments

Popular posts from this blog

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

Improved querying for SureChEMBL

    Dear SureChEMBL users, Earlier this year we ran a survey to identify what you, the users, would like to see next in SureChEMBL. Thank you for offering your feedback! This gave us the opportunity to have some interesting discussions both internally and externally. While we can't publicly reveal precisely our plans for the coming months (everything will be delivered at the right time), we can at least say that improving the compound structure extraction quality is a priority. Unfortunately, the change won't happen overnight as reprocessing 167 millions patents takes a while. However, the good news is that the new generation of optical chemical structure recognition shows good performance, even for patent images! We hope we can share our results with you soon. So in the meantime, what are we doing? You may have noticed a few changes on the SureChEMBL main page. No more "Beta" flag since we consider the system to be stable enough (it does not mean that you will never ...

ChEMBL brings drug bioactivity data to the Protein Data Bank in Europe

In the quest to develop new drugs, understanding the 3D structure of molecules is crucial. Resources like the Protein Data Bank in Europe (PDBe) and the Cambridge Structural Database (CSD) provide these 3D blueprints for many biological molecules. However, researchers also need to know how these molecules interact with their biological target – their bioactivity. ChEMBL is a treasure trove of bioactivity data for countless drug-like molecules. It tells us how strongly a molecule binds to a target, how it affects a biological process, and even how it might be metabolized. But here's the catch: while ChEMBL provides extensive information on a molecule's activity and cross references to other data sources, it doesn't always tell us if a 3D structure is available for a specific drug-target complex. This can be a roadblock for researchers who need that structural information to design effective drugs. Therefore, connecting ChEMBL data with resources like PDBe and CSD is essen...