Skip to main content

New Drug Approvals 2012 - Pt. XIV - Mirabegron (MyrbetriqTM)


ATC Code: G04BD (incomplete)
Wikipedia: Mirabegron


On June 28 2012, the FDA approved Mirabegron (tradename: Myrbetriq; Research Code: YM-178), a novel, first-in-class selective β3-adrenergic receptor agonist indicated for the treatment of overactive bladder (OAB) with symptoms of urge urinary incontinence, urgency, and urinary frequency. OAB syndrome is a urological condiction defined as urinary urgency, usually accompanied by frequency and nocturia, with or without urge urinary incontinence, in the absence of urinary tract infection or other obvious pathology. Mirabegron acts by relaxing the detrusor smooth muscle during the storage phase of the urinary bladder fill-void cycle by activation of β3-receptor which in turn increases bladder capacity.

Other treatments for OAB are already in the market and these include treatments with antimuscarinic drugs, such as Flavoxate (approved in 1970; tradename: Urispas; ChEMBL: CHEMBL1493), Oxybutynin (approved in 1975, tradenames: Ditropan, Ditropan XL, Oxytrol, Gelnique, Anturol; ChEMBL: CHEMBL1231), Tolterodine (approved in 1998; tradenames: Detrol, Detrol LA; ChEMBL: CHEMBL1382), Trospium (approved in 2004; tradenames: Santura, Santura XR; ChEMBL: CHEMBL1201344), Solifenacin (approved in 2004; tradenames: Vesicare; ChEMBL: CHEMBL1200803), Darifenacin (approved in 2004; tradenames: Enablex; ChEMBL: CHEMBL1346) and Fesoterodine (approved in 2008; tradenames: Toviaz; ChEMBL: CHEMBL1201764). While these drugs act by inhibiting the muscarinic action of acethylcholine, Mirabegron represents the first β3-receptor agonist to ever reach the market.

β3-receptor (ChEMBL: CHEMBL246; Uniprot: P13945) is a 408 amino-acid long G protein-coupled receptor (GPCR), belonging to Rhodopsin family (PFAM: PF00001; subfamily A17). Crystal structures of the closely related Î²1- and Î²2-receptors are known and act as good frameworks for understanding the mode of action of Mirabegron.

>ADRB3_HUMAN Beta-3 adrenergic receptor
MAPWPHENSSLAPWPDLPTLAPNTANTSGLPGVPWEAALAGALLALAVLATVGGNLLVIV
AIAWTPRLQTMTNVFVTSLAAADLVMGLLVVPPAATLALTGHWPLGATGCELWTSVDVLC
VTASIETLCALAVDRYLAVTNPLRYGALVTKRCARTAVVLVWVVSAAVSFAPIMSQWWRV
GADAEAQRCHSNPRCCAFASNMPYVLLSSSVSFYLPLLVMLFVYARVFVVATRQLRLLRG
ELGRFPPEESPPAPSRSLAPAPVGTCAPPEGVPACGRRPARLLPLREHRALCTLGLIMGT
FTLCWLPFFLANVLRALGGPSLVPGPAFLALNWLGYANSAFNPLIYCRSPDFRSAFRRLL
CRCGRRLPPEPCAAARPALFPSGVPAARSSPAQPRLCQRLDGASWGVS


Mirabegron is a synthetic chiral small-molecule, with a molecular weight of 396.51 Da, a AlogP of 2.26, 4 hydrogen bond donors and 5 hydrogen bond acceptors, and thus fully rule-of-five compliant. (IUPAC: 2-(2-amino-1,3-thiazol-4-yl)-N-[4-[2-[[(2R)-2-hydroxy-2-phenylethyl]amino]ethyl]phenyl]acetamide; Canonical Smiles: C1=CC=C(C=C1)[C@H](CNCCC2=CC=C(C=C2)NC(=O)CC3=CSC(=N3)N)O; InChI: InChI=1S/C21H24N4O2S/c22-21-25-18(14-28-21)12-20(27)24-17-8-6-15(7-9-17)10-11-23-13-19(26)16-4-2-1-3-5-16/h1-9,14,19,23,26H,10-13H2,(H2,22,25)(H,24,27)/t19-/m0/s1)

The recommended starting dosage of Mirabegron is 25 mg once daily, with or without food, and is effective for 8 weeks. Depending individual patient efficacy and tolerability, the dose may be increased to 50 mg once daily.

Mirabegron has a bioavalibity of 29% at a dose of 25 mg, which increases to 35% at a dose of 50 mg, a volume of distribution (Vd) of approximately 1670 L and a moderate plasma protein binding of ca. 71%. Mirabegron is metabolized via multiple pathways involving dealkylation, oxidation, glucuronidation and amide hydrolyis. Studies have suggested that although CYP3A4 and CYP2D6 isoenzymes play a role in the oxidative metabolism of Mirabegron, this is a limited role in the overall elimination. In addition to these isoenzymes, the metabolism of Mirabegron may also involve butylcholinesterase, uridine diphospho-glucuronosyltransferases and alcohol dehydrogenase. Two major inactive metabolites were observed in human plasma and these represent 16% and 11% of the total exposure. Mirabegron total clearance (CLtot) from plasma is ca. 57 L/h, with a terminal half-life of approximately of 50 hours. Renal clearance (CLR) is approximately 13 L/h, which corresponds to nearly 25% of CLtot. The urinary elimination of unchanged Mirabegron is dose-dependent and ranges from ca. 6% after a daily dose of 25 mg to 12.2% after a daily dose of 100 mg.

The license holder is Astellas Pharma Inc. and the full prescribing information of Mirabegron can be found here.

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEM...