Skip to main content

New Drug Approvals 2012 - Pt. XVI - Aclidinium bromide (TudorzaTM PressairTM)






ATC Code: R03BB05
Wikipedia: Aclidinium bromide

On July 23th, the FDA approved Aclidinum bromide (Tradename: Tudorza PressairTM; Research Codes: LAS-34273, LAS W-330), a muscarinic acetylcholine M3 receptor antagonist, for the long-term maintenance treatment of bronchospasm associated with chronic obstructive pulmonary disease (COPD).

Chronic obstructive pulmonary disease (COPD) is characterised by the occurrence of chronic bronchitis or emphysema, a pair of commonly co-existing diseases of the lungs in which the airways become narrowed. Bronchial spasms, a sudden constriction of the muscles in the walls of the bronchioles, occur frequently in COPD.

Aclidinum bromide is a long-acting antimuscarinic agent that through the inhibition of the muscarinic acetylcholine M3 receptors present in the airway smooth muscle, leads to bronchodilation, and consequently eases the symptoms of COPD.

The muscarinic acetylcholine M3 receptor (Uniprot: P20309, ChEMBL: CHEMBL245) belongs to the G-protein coupled receptor (GPCR) type 1 family, and binds the endogenous neurotransmitter acethylcoline. Since it is coupled to a Gq protein, its inhibition leads to a decrease of intracellular calcium levels, and consequently smooth muscle relaxation.

>ACM3_HUMAN Muscarinic acetylcholine receptor M3
MTLHNNSTTSPLFPNISSSWIHSPSDAGLPPGTVTHFGSYNVSRAAGNFSSPDGTTDDPL
GGHTVWQVVFIAFLTGILALVTIIGNILVIVSFKVNKQLKTVNNYFLLSLACADLIIGVI
SMNLFTTYIIMNRWALGNLACDLWLAIDYVASNASVMNLLVISFDRYFSITRPLTYRAKR
TTKRAGVMIGLAWVISFVLWAPAILFWQYFVGKRTVPPGECFIQFLSEPTITFGTAIAAF
YMPVTIMTILYWRIYKETEKRTKELAGLQASGTEAETENFVHPTGSSRSCSSYELQQQSM
KRSNRRKYGRCHFWFTTKSWKPSSEQMDQDHSSSDSWNNNDAAASLENSASSDEEDIGSE
TRAIYSIVLKLPGHSTILNSTKLPSSDNLQVPEEELGMVDLERKADKLQAQKSVDDGGSF
PKSFSKLPIQLESAVDTAKTSDVNSSVGKSTATLPLSFKEATLAKRFALKTRSQITKRKR
MSLVKEKKAAQTLSAILLAFIITWTPYNIMVLVNTFCDSCIPKTFWNLGYWLCYINSTVN
PVCYALCNKTFRTTFKMLLLCQCDKKKRRKQQYQQRQSVIFHKRAPEQAL

There is one partially resolved 3D structure for this protein (2CSA), but there are now several relevant homologous structures of other closely related members of the family (see here for a current list of rhodopsin-like GPCR structures).

The -ium USAN/INN stem covers quaternary ammonium compounds. Members of these class include for example tiotropium bromide (ChEMBL ID: CHEMBL1182657), and ipratropium bromide (ChEMBL ID: CHEMBL1615433, which are also anthicholinergic drugs approved for the treatment of COPD.




Aclidinum bromide (IUPAC: [1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octan-3-yl]2-hydroxy-2,2-dithiophen-2-ylacetate bromide; Canonical smiles (for active quaternary amine): OC(C(=O)O[C@H]1C[N+]2(CCCOc3ccccc3)CCC1CC2)(c4cccs4)c5cccs5 ; PubChem: 11467166; Chemspider: 9609381; ChEMBLID: CHEMBL1194325; Standard InChI Key: ASMXXROZKSBQIH-VITNCHFBSA-N) is a synthetic quaternary ammonium compound with one chiral center, a molecular weight of 484.7 Da, 7 hydrogen bond acceptors, 1 hydrogen bond donor, and has an ALogP of 3.4. The compound is therefore fully rule-of-five compliant.

Aclidinum bromide is available as a dry powder inhaler and the recommended daily dose is two oral inhalations of 400 mcg. It has an apparent volume of distribution of 300 L following intravenous administration of 400 mcg, and its absolute bioavailability is approximately 6%. The estimated effective half-life of Aclidinum (t1/2) is 5 to 8 hours.

The major route of metabolism for aclidinum bromide is non-enzymatic and esterases-mediated hydrolysis, being rapidly and extensively converted to its alcohol and dithienylglycolic acid derivatives, neither of which binds to muscarinic receptors - this leads to very low systemic exposure of the active aclidinium species. Excretion of aclidinium bromide is mainly through the urine (54 - 65%) and faeces (20 - 30%), where only 1% is excreted as unchanged aclidinium. The total clearance is approximately 170 L/h after an intravenous dose of aclidinium bromide in young healthy volunteers.

The license holder for TudorzaTM PressairTM is Forest Pharmaceuticals, and the full prescribing information can be found here.

Comments

Andrew said…
In addition to the structure of the peptide mentioned in the post, there's also a recent structure of the M3 receptor in complex with the drug tiotropium. The PDB ID is 4DAJ, and Pubmed ID for the associated publication is 22358844.

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEM...