Skip to main content

New Drug Approvals 2012 - Pt. XIX - Enzalutamide (Xtandi capsulesTM)



On August 31, the FDA approved Enzalutamide for the treatment of castration-resistant prostate cancer. Prostate cancer affects predominantly men aged 50 years and older and is the sixth most frequent source of cancer-related deaths in men world-wide.

The prostate is a gland located below the bladder that surrounds the urethra and secretes simple sugars, citrate, zinc and other constituents of liquid semen. Prostate cancer in many cases has only mild symptoms, even without treatment. Prostate cancer can be detected by measuring concentrations of the biomarker prostate specific antigen. Its progression stage is assessed by the widely established Gleason grading scheme. In many cases it is sufficient to monitor cancer progression without treatment.
For aggressive tumors, various treatment options are available and include surgery, irradiation, cryosurgery, chemotherapy and hormonal therapy. Hormonal therapy relies on the tumor's dependence on androgen signalling, which can be ablated using the antiandrogens flutamide (CHEMBL806) and bicalutamide (CHEMBL409). However, after about two to three years, many prostate cancers become refractory to hormone therapy, even though they still rely on androgen signalling. These so-called castration resistant cancers can be treated with docetaxel (CHEMBL92) and, as a second line of defense, the newly approved Enzalutamide.

Enzalutamide and its primary metabolite N-desmethyl enzalutamide competitively inhibit androgen binding to the androgen receptor (Uniprot P10275).


Enzalutamide is a small molecule with molecular weight 464.44 and calculated logP of 3.88. It is practically insoluble in water and is administered in liquid-filled soft gelatin capsules.

IUPAC: 4-{3-[4-cyano-3-(trifluoromethyl)phenyl]-5,5­ dimethyl-4-oxo-2-sulfanylideneimidazolidin-1-yl}-2-fluoro-N-methylbenzamide
SMILES: CNC(=O)c1ccc(N2C(=S)N(c3ccc(C#N)c(C(F)(F)F)c3)C(=O)C2(C)C)cc1F
InChI=1S/C21H16F4N4O2S/c1-20(2)18(31)28(12-5-4-11(10-26)15(8-12)21(23,24)25)19(32)29(20)13-6-7-14(16(22)9-13)17(30)27-3/h4-9H,1-3H3,(H,27,30)
InChIKey=WXCXUHSOUPDCQV-UHFFFAOYSA-N

Enzatulamide is administered in a daily dose of 160mg, which equates to four 40mg capsules. It has a Cmax of 16.6µg/mL that is reached after about one hour and is 97% bound to plasma proteins.

Enzatulamide is metabolised primarily by CYP2C8 (P10632) and CYP3A4 (P08684). A major metabolite, N-desmethyl enzalutamide has similar bioactivity as enzatulamide.

Adverse reactions include asthenia/fatigue, back pain, diarrhea and others.

Enzatulamide is marketed by Medivation under the trade name Xtandi.

Comments

Unknown said…
I think that there is a mis-spelling just below the chemical structure: it says Enzatolamide is a small molecule.

I only bring it up as for a moment I thought that the post was talking about two different (but possibly related) compounds.
jpo said…
Doh, thanks for spotting this.

The blog fairy has been punished!

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEM...