Skip to main content

New Drug Approvals 2012 - Pt. XVII - Linaclotide (LinzessTM)



ATC Code: A03A (incomplete)
Wikipedia: Linaclotide

On Agust 30, the FDA approved Linaclotide (tradename: Linzess; Research Code: MD-1100, ASP-0456), a novel, first-in-class Guanylate Cyclase-C (GC-C) agonist indicated for the treatment in adults of irritable bowel syndrome with constipation (IBS-C), and chronic idiophatic constipation (CIC). CIC is a diagnosis given to people who experience persistent constipation and do not respond to standard treatment. IBS-C is a subtype characterized by chronic abnominal pain, discomfort, bloating and alteration of bowel habits. Linaclotide exherts its therapeutic action by binding to GC-C, resulting in an increase in both intracellular and extracellular concentrations of cyclic guanosine monophosphate (cGMP). Increase in intracellular cGMP stimulates secretion of chloride and bicarbonate into the intestinal lumen, mainly through activation of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel, resulting in increased intestinal fluid and accelerated transit. Linaclotide has been shown, in animal models, to not only accelerate gastrointestinal (GI) transit, but also to reduce intestinal pain, which is thought to be mediated by increased extracellular cGMP.

Other treatments for IBS have been already in the market and these include treatments with antimuscarinic drugs, such as Dicyclomine (approved in 1950; tradename: Bentyl; ChEMBL: CHEMBL1123), Methantheline (approved in 1951, tradename: Banthine; ChEMBL: CHEMBL1201264), a serotonin agonist, such as Tegaserod (approved in 2002; tradename: Zelnorm; ChEMBL: CHEMBL1201332) and a serotonin antagonist, such as Alosetron (approved in 2000; tradename: Lotronex; Chembl: CHEMBL1110) and Lubiprostone (approved in 2006; tradename: Amitiza; ChEMBL: CHEMBL1201134), a chloride channel activator. While these drugs act by either inhibiting the muscarinic action of acethylcholine, or through the activation of the serotonin receptors of the nervous system in the GI tract, or by activating the chloride channels on the GI epithelial cells, Linaclotide represents the first GC-C agonist to ever reach the market.

GC-C (ChEMBL: CHEMBL1795197; Uniprot: P25092) is a 1073 amino-acid long enzyme, which has an extracellular ligand binding domain (PFAM: ANF_receptor), a domain similar to that of protein tyrosine kinases (PFAM: Pkinase_Tyr) and a adenylate and guanylate cyclase catalytic domain (PFAM: Guanylate_cyc).

>GUC2C_HUMAN Heat-stable enterotoxin receptor
MKTLLLDLALWSLLFQPGWLSFSSQVSQNCHNGSYEISVLMMGNSAFAEPLKNLEDAVNE
GLEIVRGRLQNAGLNVTVNATFMYSDGLIHNSGDCRSSTCEGLDLLRKISNAQRMGCVLI
GPSCTYSTFQMYLDTELSYPMISAGSFGLSCDYKETLTRLMSPARKLMYFLVNFWKTNDL
PFKTYSWSTSYVYKNGTETEDCFWYLNALEASVSYFSHELGFKVVLRQDKEFQDILMDHN
RKSNVIIMCGGPEFLYKLKGDRAVAEDIVIILVDLFNDQYFEDNVTAPDYMKNVLVLTLS
PGNSLLNSSFSRNLSPTKRDFALAYLNGILLFGHMLKIFLENGENITTPKFAHAFRNLTF
EGYDGPVTLDDWGDVDSTMVLLYTSVDTKKYKVLLTYDTHVNKTYPVDMSPTFTWKNSKL
PNDITGRGPQILMIAVFTLTGAVVLLLLVALLMLRKYRKDYELRQKKWSHIPPENIFPLE
TNETNHVSLKIDDDKRRDTIQRLRQCKYDKKRVILKDLKHNDGNFTEKQKIELNKLLQID
YYNLTKFYGTVKLDTMIFGVIEYCERGSLREVLNDTISYPDGTFMDWEFKISVLYDIAKG
MSYLHSSKTEVHGRLKSTNCVVDSRMVVKITDFGCNSILPPKKDLWTAPEHLRQANISQK
GDVYSYGIIAQEIILRKETFYTLSCRDRNEKIFRVENSNGMKPFRPDLFLETAEEKELEV
YLLVKNCWEEDPEKRPDFKKIETTLAKIFGLFHDQKNESYMDTLIRRLQLYSRNLEHLVE
ERTQLYKAERDRADRLNFMLLPRLVVKSLKEKGFVEPELYEEVTIYFSDIVGFTTICKYS
TPMEVVDMLNDIYKSFDHIVDHHDVYKVETIGDAYMVASGLPKRNGNRHAIDIAKMALEI
LSFMGTFELEHLPGLPIWIRIGVHSGPCAAGVVGIKMPRYCLFGDTVNTASRMESTGLPL
RIHVSGSTIAILKRTECQFLYEVRGETYLKGRGNETTYWLTGMKDQKFNLPTPPTVENQQ
RLQAEFSDMIANSLQKRQAAGIRSQKPRRVASYKKGTLEYLQLNTTDKESTYF


Linaclotide is an oral peptide drug, comprised of 14 amino acids and with disulfide bonds between cysteines (1-6), (2-10) and (3-15). Linaclotide has a molecular weight of 1526.8 Da. (Name: L-cysteinyl-L-cysteinyl-L-glutamyl-L-tyrosyl-L-cysteinyl-L-cysteinyl-L­-asparaginyl-L-prolyl-L-alanyl-L-cysteinyl-L-threonyl-glycyl-L-cysteinyl-L-tyrosine, cyclic (1-6), (2-10), (5­-13)-tris (disulfide); CanonicalSmiles: C[C@@H](O)[C@@H]1NC(=O)[C@@H]2CSSC[C@@H]3NC(=O)[C@@H](N)CSSC[C@H](NC(=O)[C@H](CSSC[C@H](NC(=O)CNC1=O)C(=O)N[C@@H](Cc4ccc(O)cc4)C(=O)O)NC(=O)[C@H](Cc5ccc(O)cc5)NC(=O)[C@H](CCC(=O)O)NC3=O)C(=O)N[C@@H](CC(=O)N)C(=O)N6CCC[C@H]6C(=O)N[C@@H](C)C(=O)N2; InChI: InChI=1S/C59H79N15O21S6/c1-26-47(82)69-41-25-101-99-22-38-52(87)65-33(13-14-45(80)81)49(84)66-34(16-28-5-9-30(76)10-6-28)50(85)71-40(54(89)72-39(23-97-96-20-32(60)48(83)70-38)53(88)67-35(18-43(61)78)58(93)74-15-3-4-42(74)56(91)63-26)24-100-98-21-37(64-44(79)19-62-57(92)46(27(2)75)73-55(41)90)51(86)68-36(59(94)95)17-29-7-11-31(77)12-8-29/h5-12,26-27,32-42,46,75-77H,3-4,13-25,60H2,1-2H3,(H2,61,78)(H,62,92)(H,63,91)(H,64,79)(H,65,87)(H,66,84)(H,67,88)(H,68,86)(H,69,82)(H,70,83)(H,71,85)(H,72,89)(H,73,90)(H,80,81)(H,94,95)/t26-,27+,32-,33-,34-,35-,36-,37-,38-,39-,40-,41-,42-,46-/m0/s1)

The recommended dosage of Linaclotide is 290 mcg orally once daily for the case of IBS-C, and 145 mcg orally once daily for the treatment of CIC, on empty stomach at least 30 minutes prior to first meal of the day.

Linaclotide is minimally absorbed with low systemic availability following oral administration. Concentrations of Linaclotide and its active metabolite in plasma are below quantitation after oral doses of 145 mcg and 290 mcg were administrated. Therefore Linaclotide is expected to be minimally distributed to tissues. Linaclotide is metabolised within the GI tract to its active metabolite by loss of the terminal tyrosine moiety. Both Linaclotide and the metabolite are proteolitically degraded within the intestinal lumen to smaller peptides and naturally occuring amino acids. Following the daily administration of 290 mcg of Linaclotide for seven days, about 5% and 3% were recovered in the feces of fasted and fed subjects, respectively, and virtually all as the active metabolite.

The license holder is Ironwood Pharmaceuticals, Inc. and the full prescribing information of Linaclotide can be found here.

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEM...