Skip to main content

Direct submissions of data to ChEMBL and the Open PHACTS project



Don’t we just love the fact that these days so much bioactivity data is freely available at no cost (to the end user)? I think we do. The more, the better. So, what would your answer be if someone asked you if you consider it to be a good idea if they would deposit some of their unpublished bioactivity data in ChEMBL? My guess is that you would be all in favour of this idea. 'Go for it', you might even say. On the other hand, if the same person would ask you what you think of the idea to deposit some of ‘your bioactivity data’ in ChEMBL the situation might be completely different.  

First and foremost you might respond that there is no such bioactivity data that you could share. Well let’s see about that later. What other barriers are there? If we cut to the chase then there is one consideration that (at least in my experience) comes up regularly and this is the question:  'What’s in it for me?' Did you ask yourself the same question? If you did and you were thinking about ‘instant gratification’ I haven’t got a lot to offer. Sorry, to disappoint you. However, since when is science about ‘instant gratification’? If we would all start to share the bioactivity data that we can share (and yes, there is data that we can share but don’t) instead of keeping it locked up in our databases or spreadsheets this would make a huge difference to all of us. So far the main and almost exclusive way of sharing bioactivity data is through publications but this is (at least in my view) far too limited. In order to start to change this (at least a little bit) the concept of ChEMBL supplementary bioactivity data has been introduced (as part of the efforts of the Open PHACTS project, http://www.openphacts.org).

Here is how it works: If you have unpublished bioactivity data that has been generated in an assay that can be found in ChEMBL (since the publication where the assay is described is also in ChEMBL), you can now deposit this data in ChEMBL (see http://dx.doi.org/10.6019/CHEMBL2094195 for an example). The obvious situation would be one where only a subset of the results have been reported in the publication but there are many more results (e.g. inactives). If you work in an industrial setting and might feel that you are not be in a position to release additional chemical structures you could think about depositing bioactivity data for compounds in (older) patents. Or you have reported bioactivity data in a poster. These are only examples and there are many more opportunities. In some cases we might explore new territory and the progress might be slow, but if we don’t try new things we are stuck with what we have. 'Do we really want this?' I hope the answer is no. So, let’s not focus on ‘instant gratification’ but help to grow the body of freely available bioactivity data by contributing to ChEMBL supplementary bioactivity data. If we could just give it a go it might make a difference. The concept might be quite restricted (e.g. the assay needs to be published) but we need to start somewhere. If you want to find out more about ChEMBL supplementary bioactivity data why not drop ChEMBL Help a line (chembl-help@ebi.ac.uk) and put ‘ChEMBL supplementary bioactivity data’ in the subject field. And don’t worry, you are not committing yourself by wanting to know more. 

ChEMBL, and the whole world of drug discoverers, is looking forward to hearing from you.  

Stefan Senger

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEM...