Skip to main content

New Drug Approvals 2013 - Pt. VI - Gadoterate Meglumine (DotaremTM)






ATC Code: V08CA02
Wikipedia: Gadoteric Acid

On March 20th 2013, FDA approved Gadoteric Acid (as the meglumine salt; tradename: Dotarem; research code: P 449; CHEMBL: CHEMBL2219415), a gadolinium-based contrast agent (GBCA) indicated for intravenous use with magnetic resonance imaging (MRI) in brain (intracranial), spine and associated tissues of patients ages 2 years and older, to detect and visualize areas with disruption of the blood brain barrier (BBB) and/or abnormal vascularity of the central nervous system (CNS).

When placed in a magnetic field, Gadoteric Acid develops a magnetic moment. This magnetic moment enhances the relaxation rates of water protons in its vicinity, leading to an increase in signal intensity (brightness) of tissues. Gadoteric Acid enhances the contrast in MRI images, by shortening the spin-lattice (T1) and the spin-spin (T2) relaxation times.

Other GBCAs have already been approved by FDA for use in patients undergoing CNS MRI and these include Gadopentetate Dimeglumine (approved in 1988 under the tradename Magnevist; ChEMBL: CHEMBL1200431; PubChem: CID55466; ChemSpider: 396793), Gadoteridol (approved in 1992 under the tradename Prohance; ChEMBL: CHEMBL1200593; PubChem: CID60714; ChemSpider: 54719), Gadodiamide (approved in 1993 under the tradename Omniscan; ChEMBL: CHEMBL1200346; PubChem: CID153921; ChemSpider: 135661), Gadoversetamide (approved in 1999 under the tradename Optimark; ChEMBL: CHEMBL1200457; PubChem: CID444013; ChemSpider: 392041), Gadobenate Dimeglumine (approved in 2004 under the tradename Multihance; ChEMBL: CHEMBL1200571; PubChem: CID49799998; ChemSpider: 25046318) and Gadobutrol (approved in 2011 under the tradename Gadavist; ChEMBL: CHEMBL2218860; PubChem: CID15814656; ChemSpider: 26330337).



Gadoteric Acid is a macrocyclic ionic contrast agent, consisting of the chelating agent DOTA and gadolinium (Gd3+).
IUPAC: gadolinium(3+);2-[4,7,10-tris(carboxymethyl)-1,4,7,10-tetrazacyclododec-1-yl]acetic acid
Canonical Smiles: [Gd+3].OC(=O)CN1CCN(CC(=O)[O-])CCN(CC(=O)[O-])CCN(CC(=O)[O-])CC1
InChI: InChI=1S/C16H28N4O8.Gd/c21-13(22)9-17-1-2-18(10-14(23)24)5-6-20(12-16(27)28)8-7-19(4-3-17)11-15(25)26;/h1-12H2,(H,21,22)(H,23,24)(H,25,26)(H,27,28);/q;+3/p-3

The recommended dose of Gadoteric Acid is 0.2 mL/kg (0.1 mmol/kg) body weight administrated as an intravenous bolus injection at a flow rate of approximately 2 mL/second for adults and 1-2 mL/second for pediatric patients. Gadoteric Acid has a volume of distribution of 179 mL/kg and 211 mL/kg in female and male subjetcs, respectively, roughly equivalent to that of extracellular water, and an elimination half-life of about 1.4 hr and 2.0 hr in female and male subjects, respectively. Gadoteric Acid does not undergo plasma protein binding and it is not known to be metabolized. It is excreted primarily in the urine with 72.9% and 85.4% eliminated within 48 hours in female and male subjects, respectively. In healthy subjects, the renal and total clearance rates are comparable, with a renal clearance of 1.27 mL/min/kg and 1.40 mL/min/kg in female and male subjects, respectively, and a total clearance of 1.74 mL/min/kg and 1.64 mL/min/kg in female and male subjects, respectively.

All GBCAs, including Gadoterate Meglumine, carry a boxed warning about the risk of nephrogenic systemic fibrosis (NSF), a condition associated with the use of GBCAs in certain patients with kidney disease.

The license holder for Gadoterate Meglumine is Guerbet LLC and the prescribing information can be found here (Gadoteric Acid is also approved in Europe and the SPC can be found here).

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEM...