Skip to main content

Document Similarity in ChEMBL - 1


Many of you will have noticed a new section on the ChEMBL interface, specifically at the Document Report Card page, called Related Documents. It consists of a table listing the links for up to 5 other ChEMBL documents (i.e. publications aka papers) that are scored to be the most similar to the one featured in the report card. Here's an example

How does this work? There are examples of related documents sections online, e.g. in PubMed or in various journal publishers' websites. Document 'related-ness' or similarity can be assessed by comparing MeSH keywords or by clustering documents using TF-IDF weighted term vectors. Fortunately, ChEMBL puts a lot of effort in manually extracting and curating the compounds and biological targets from publications, so why not using these as descriptors to assess document similarity instead - as far as we know this is the first time this approach has been implemented?

So, here's how it works:

Firstly, for each document in ChEMBL, its list of references is retrieved using the excellent EuropePMC web services. By considering documents as nodes which are connected with an edge if one paper cites the other, a directed graph structure emerges. By doing this for all ~50K documents in ChEMBL, you get the massive graph illustrated above in Cytoscape. As a bonus, by measuring the in- and out- degree of the nodes, one could check which are the most cited papers in ChEMBL - but that's the topic of another blog post. This graph could be further annotated with protein target families, authors and institutions, as it has been elegantly done here.

Moving on, once a relationship between two documents is established, we need a way to quantify their similarity. As hinted above, we used the normalised overlap of compounds and targets reported in the two documents. This is done using the classic Tanimoto coefficient, so if doc A reports compounds (1,2,3) and doc B reports compounds (3,4,5), their compound Tanimoto similarity T is 1/5 or 0.2. Exactly the same applies for the target-based document similarity. The composite score we use to rank docs in the Related Documents section is simply the maximum of the two individual ones.

What does all that mean in practice? It means that 2 papers are listed as similar if they their reported compounds or biological targets overlap significantly (and one cites the other). For example, papers with follow-up experiments on the same candidate drug will be deemed similar, e.g. this one. The same will apply to two papers that involve kinase panel screening assays. A desirable side-effect is that by following the links, the tenacious user may traverse the whole graph displayed above! 


George & Mark 

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEM...